所谓的Android消息机制其实就是Handler机制,其主要的作用是将一个任务放到另外一个线程中去执行。一般来说用于网络请求之后更新UI的情况较多,但是这并不意味着Handler只能用于这种场景,为什么更新UI的时候要使用到Handler呢?因为Android规定只能在UI线程中访问UI,否则会报错!这个线程检查的操作是在ViewRootImpl的checkThread方法中去做的
void checkThread() {
if (mThread != Thread.currentThread()) {
throw new CalledFromWrongThreadException(
"Only the original thread that created a view hierarchy can touch its views.");
}
}
其中这个mThread就是UI线程。如果说没有Handler的话哪我们该怎么去刷新UI呢?
基本使用
private Handler handler = new Handler() {
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
switch (msg.what) {
case 0:
{
textView.setText("change");
}
}
}
};
...
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
handler.sendEmptyMessage(0);
}
}).start();
以上就是我们最常见的Handler最常见的写法,但是这样写存在一个很大的问题,那就是内存泄漏。在Java语言中,非静态内部类会持有外部类的一个隐试引用,这样就可能造成外部类无法被垃圾回收。而导致内存泄漏。很显然在这里Handler就是一个非静态内部类,它会持有Activity的应用导致Activity无法正常释放。
内存泄漏问题
上面说到Handler默认的使用方式岁会造成内存泄露,那么该如何去写呢?正确的写法应该是使用静态内部类的形式,但是如果只使用静态内部类的话handler调用activity中的方法又成了一个问题,因此使用弱引用来持有外部activity对象成为了很好的解决方案。代码如下:
final MyHandler handler=new MyHandler(this);
…
private static class MyHandler extends Handler {
//创建一个弱引用持有外部类的对象
private final WeakReference<MainActivity> content;
private MyHandler(MainActivity content) {
this.content = new WeakReference<MainActivity>(content);
}
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
MainActivity activity= content.get();
if (activity != null) {
switch (msg.what) {
case 0: {
activity.notifyUI();
}
}
}
}
}
…
@Override
protected void onDestroy() {
super.onDestroy();
handler.removeCallbacksAndMessages(this);
}
消息机制中的成员
Hander机制当中的主要成员有Handler、Looper、MessageQueue、Message这四个成员,当然Threadlocal也会存在一些踪迹,但是个人认为它并不属于Handler机制中的成员!
Handler
从名字的英文含义上你就能大概知道它是消息处理者,负责发送消息和处理消息。
Looper
是一个查询消息的循环结构,负责查询MessageQueue当中的消息
Message
这就是我们的消息,它能携带一个int数据和一个Object数据
MessageQueue
它是Message的一个集合
源码分析Handler机制的工作流程
我们先从Handler发送消息开始,上面Demo中我们使用的是sendEmptyMessage方法,但其实我们还有一些了其他的send方法和post方法,但是这些方法最终都是要调用sendMessageAtTime具体代码如下
/**
* Enqueue a message into the message queue after all pending messages
* before the absolute time (in milliseconds) <var>uptimeMillis</var>.
* <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b>
* Time spent in deep sleep will add an additional delay to execution.
* You will receive it in {@link #handleMessage}, in the thread attached
* to this handler.
*
* @param uptimeMillis The absolute time at which the message should be
* delivered, using the
* {@link android.os.SystemClock#uptimeMillis} time-base.
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting. Note that a
* result of true does not mean the message will be processed -- if
* the looper is quit before the delivery time of the message
* occurs then the message will be dropped.
*/
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
在sendMessageAtTime有一个点就是mQueue这个变量,它是一个MessageQueue的对象。最终我们调用了enqueueMessage方法
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
首先msg要绑定Handler,msg.target = this;这个好理解,一个Message对象只能由一个Handler来处理。然后
if (mAsynchronous) {
msg.setAsynchronous(true);
}
如果mAsynchronous为true表示该消息是异步的。最后一步是将消息交给我们的MessageQueue的enqueueMessage处理,代码如下:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
到这我们的Message对象就添加到MessageQueue当中了!到这里我们理解了Handler的send和post方法的实际作用就是将Message消息添加到MessageQueue之中,但是这一系列的操作之中我们并没有看见创建MessageQueue对象的过程,似乎在这之前它已经创建好了,于是我们想起了之前的一个变量叫mQueue,它是一个MessageQueue的对象
final MessageQueue mQueue;
那他是在哪得到的呢?我们看一下Handler的构造方法,以我们最常用的来看
/**
* Default constructor associates this handler with the {@link Looper} for the
* current thread.
*
* If this thread does not have a looper, this handler won't be able to receive messages
* so an exception is thrown.
*/
public Handler() {
this(null, false);
}
该方法调用了
/**
* Use the {@link Looper} for the current thread with the specified callback interface
* and set whether the handler should be asynchronous.
*
* Handlers are synchronous by default unless this constructor is used to make
* one that is strictly asynchronous.
*
* Asynchronous messages represent interrupts or events that do not require global ordering
* with respect to synchronous messages. Asynchronous messages are not subject to
* the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
*
* @param callback The callback interface in which to handle messages, or null.
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
*
* @hide
*/
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
好了我们看到了mQueue实际上是通过mLooper.mQueue这获取到的。而mLooper又是通过
Looper.myLooper();
这个方法来获取到的,分析到这终于又出现了一个关键字Looper,那我们看一下myLooper这个方法
/**
* Return the Looper object associated with the current thread. Returns
* null if the calling thread is not associated with a Looper.
*/
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
哈!一脸懵逼。但是大概可以知道Looper对象被存在了一个对象里面,看到了get方法我很容易想到它也许还有set方法,我们先来看一下这个sThreadLocal是什么?
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
好了我们知道ThreadLocal这东西了,但是到这线索似乎断了set方法在哪里?这时候我忽然想到如果在子线程中使用Handler是一个什么样的场景!如果不先调用Looper.prepare()方法是会报错吧!问题的关键就在于这,我们看一下代码
/** Initialize the current thread as a looper.
* This gives you a chance to create handlers that then reference
* this looper, before actually starting the loop. Be sure to call
* {@link #loop()} after calling this method, and end it by calling
* {@link #quit()}.
*/
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
sThreadLocal的set方法被我们找到了,并且new了一个Looper。由此可见我们的Looper也是存在ThreadLocal中的。Looper的构造方法如下所示
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
好了mQueue这个对象的由来算是讲清楚了,他就是一个MessageQueue对象!可以说Looper和MessageQueue是一一对应的,一个Looper对象中含有一个MessageQueue。ThreadLocal通过set方法将Looper存在其中,那么我们具体看一下set方法实现
/**
* Sets the current thread's copy of this thread-local variable
* to the specified value. Most subclasses will have no need to
* override this method, relying solely on the {@link #initialValue}
* method to set the values of thread-locals.
*
* @param value the value to be stored in the current thread's copy of
* this thread-local.
*/
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
可以看到Looper对象最终被存储在了一个叫ThreadLocalMap的数据结构里面,createMap方法用于创建ThreadLcalMap对象,createMap方法中会new一个ThreadLocalMap对象并将这个对象赋给t的threadlocals属性
/**
* Create the map associated with a ThreadLocal. Overridden in
* InheritableThreadLocal.
*
* @param t the current thread
* @param firstValue value for the initial entry of the map
*/
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
ThreadLocalMap个人认为是一个hash表,同样是<key,value>的形式有些和HashMap类似,它同样存在自己的扩容机制,同样存在自己的hash函数。到这里我们明白了MessageQueue是存在Looper里面的,而Looper又是存在ThreadLocal里面的,Thread当中有且只有一个ThreadLocal.ThreadLocalMap对象,因此Thread、Looper和MessageQueue三者形成了一一对应的关系,然而Handler于他们没有一点关系,Handler只和Message对象成对应的关系,所以Thread、Looper、MessageQueue、Handler四者的关系是一个线程中只能有一个Looper和一个MessageQueue但是可以存在一个或者多个Handler。到这里他们之间的关系我们搞清楚了!另外我们也知道在调用了MessageQueue的enqueueMessage方法之后我们就把Message对象添加到了MessageQueue当中了,剩下的事情就是Message是如何被处理的,在子线程当中使用Handler的时候除了要先写Looper.prepare()之外,还要写Looper.loop()方法
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
...
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
...
try {
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
...
msg.recycleUnchecked();
}
}
可以看到loop方法中有一个无限的for循环,在循环中通过queue.next()来便利Message,然后我们看到了这句代码
msg.target.dispatchMessage(msg);
这个target就是我们之前绑定的Handler,也就是说我们在这里调用了Handler的dispatchMessage()方法并且将msg作为参数传递了过去,我们看看dispatchMessage的代码
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
如果说msg的callback不为空调用handleCallback将消息交给子线程去处理,这种处理方式主要是对应了post(runable)这种形式发送消息的情况。另外就是调用handleMessage方法了,好了这个方法我们再熟悉不过了,到这里消息从MessageQueue中取出并交由Handler处理的过程也完成了。最后在loop方法中调用msg.recycleUnchecked(),到这Handler消息机制我们就算是分析完成了。那么Handler是这么实现跨线程通讯的呢?就是通过方法回调,和接口回调。