下一代分布式消息队列Apache Pulsar从入门到实现

本文来自:https://github.com/aCoder2013/blog/issues/23

Pulsar简介

Apache Pulsar是一个企业级的分布式消息系统,最初由Yahoo开发并在2016年开源,目前正在Apache基金会下孵化。Plusar已经在Yahoo的生产环境使用了三年多,主要服务于Mail、Finance、Sports、 Flickr、 the Gemini Ads platform、 Sherpa以及Yahoo的KV存储。

Pulsar之所以能够称为下一代消息队列,主要是因为以下特性:

线性扩展。能够丝滑的扩容到成百上千个节点(Kafka扩容需要占用很多系统资源在节点间拷贝数据,而Plusar完全不用)

高吞吐。已经在Yahoo的生产环境中经受了考验,每秒数百万消息

低延迟。在大规模的消息量下依然能够保持低延迟(< 5ms)

持久化机制。Plusar的持久化机制构建在Apache BookKeeper之上,提供了写与读之前的IO隔离

基于地理位置的复制。Plusar将多地域/可用区的复制作为首要特性支持。用户只需配置好可用区,消息就会被源源不断的复制到其他可用区。当某一个可用区挂掉或者发生网络分区,plusar会在之后不断的重试。

部署方式的多样化。既可以运行在裸机,也支持目前例如Docker、K8S的一些容器化方案以及不同的云厂商,同时在本地开发时也只需要一行命令即可启动整个环境。

Topic支持多种消费模式:exclusive、shared、failover

架构概述

从最上层来看,一个Plusar单元由若干个集群组成,单元内的集群可以互相之前复制数据, plusar中通常有以下几种组件:

Broker:负责处理Producer发来的消息并分发给消费者。通过一个全局的ZK集群来处理多种协作式任务,例如说基于地理位置的复制。并将消息存储到BookKeeper中,同时单个集群内也需要有一套ZK集群,来存储一些元数据。

BookKeeper集群: 内部包含多个bookies,用于持久化消息。

ZooKeeper集


Broker

在Kafka和RocketMQ中,Broker负责消息数据的存储以及consumer消费位移的存储等,而Plusar中的broker和他们两个有所不同,plusar中的broker是一个无状态的节点,主要负责三件事情:

暴露REST接口用于执行管理员的命令以及topic所有者的查询等

一个用于节点间通讯的异步的TCP服务器,协议目前采用的是Google之前开源的Protocol Buffer

为了支持地域复制,broker会将自己 集群所在的消息发布到其他可用区。

消息会被先发布到BookKeeper中,然后会在Broker本地内存中缓存一份,因此一般来说消息的读取都会从从内存中读取,因此第一条中所说的查找topic所有者就是说,因为BookKeeper中的一个ledger只允许一个writer,因此我们可以调用rest接口获取到某一个topic当前的所有者。

BookKeeper

BookKeeper是一个可横向扩展的、错误容忍的、低延迟的分布式存储服务,BookKeeper中最基本的单位是记录,实际上就一个字节数组,而记录的数组称之为ledger,BK会将记录复制到多个bookies,存储ledger的节点叫做bookies,从而获得更高的可用性和错误容忍性。从设计阶段BK就考虑到了各种故障,Bookies可以宕机、丢数据、脏数据,但是主要整个集群中有足够的Bookies服务的行为就是正确的。

在Pulsar中,每个分区topic是由若干个ledger组成的,而ledger是一个append-only的数据结构,只允许单个writer,ledger中的每条记录会被复制到多个bookies中,一个ledger被关闭后(例如broker宕机了或者达到了一定的大小)就只支持读取,而当ledger中的数据不再需要的时候(例如所有的消费者都已经消费了这个ledger中的消息)就会被删除.


Bookkeeper的主要优势在于它可以保证在出现故障时在ledger的读取一致性。因为ledger只能被同时被一个writer写入,因为没有竞争,BK可以更高效的实现写入。在Broker宕机后重启时,Plusar会启动一个恢复的操作,从ZK中读取最后一个写入的Ledger并读取最后一个已提交的记录,然后所有的消费者也都被保证能看到同样的内容。


我们知道Kafka在0.8版本之前是将消费进度存储到ZK中的,但是ZK本质上基于单个日志的中心服务,简单来讲,ZK的性能不会随着你增加更多的节点而线性增加,会只会相反减少,因为更多的节点意味着需要将日志同步到更多的节点,性能也会随之下降,因此QPS也会受单机性能影响,因此0.8版本之后就将消费进度存储到了Kafka的Topic中,而RocketMQ最初的版本也类似,有几种不同的实现例如ZK、数据库等,目前版本采用的是存储到本机文件系统中,而Plusar采用了和Kafka类似的思想,Plusar将消费进度也存储到了BK的ledger中。


元数据

Plusar中的元数据主要存储到ZK中,例如不同可用区相关的配置会存在全局的ZK中,集群内部的ZK用于存储例如某个topic的数据写入到了那些Ledger、Broker目前的一些埋点数据等等


Plusar核心概念

Topic

发布订阅系统中最核心的概念是topic,简单来说,topic可以理解为一个管道,producer可以往这个管道丢消息,consumer可以从这个管道的另一端读取消息,但是这里可以有多个consumer同时从这个管道读取消息。


每个topic可以划分为多个分区,同一个topic下的不同分区所包含的消息都是不同的。每个消息在被添加到一个分区后都会分配一个唯一的offset,在同一个分区内消息是有序的,因此客户端可以根据比如说用户ID进行一个哈希取模从而使得整个用户的消息都发往整个分区,从而一定程度上避免race condition的问题。

通过分区,将大量的消息分散到不同的节点处理从而获得高吞吐。默认情况下,plusar的topic都是非分区的,但是支持通过cli或者接口创建一定分区数目的topic。


默认情况下Plusar会自动均衡Producer和Consumer,但有时候客户端想要根据自己的业务规则也进行路由,Plusar默认支持以下几种规则:单分区、轮询、哈希、自定义(即自己实现相关接口来定制路由规则)

消费模式

消费决定了消息具体是如何被分发到消费者的,Plusar支持几种不同的消费模式: exclusive、shared、failover。图示如下:


Exclusive: 一个topic只能被一个消费者消费。Plusar默认就是这个模式

Shared: 共享模式或者叫轮询模式,多个消费者可以连接到同一个topic,消息被依次分发给消费者,当一个消费者宕机或者主动断开连接,那么发到那个消费者的还没有ack的消息会得到重新调度分发给其他消费者。

Failover: 多个消费者可以连接同一个topic并按照字典序排序,第一个消费者会开始消费消息,称之为master,当master断开连接,所有未ack和队列中剩下的消息会分发给另一个消费者。

Plusar目前也支持另一种Reader接口,支持传入一个消息ID,例如说Message.Earliest来从最早的消息开始消费。

总结

Plusar作为下一代分布式消息队列,拥有非常多吸引人的特性,也弥补了一些其他竞品的短板,例如地域复制、多租户、扩展性、读写隔离等等。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容