基于树莓派与YOLOv3模型的人体目标检测小车(二)

上篇文章介绍了如何搭建深度学习环境,在Ubuntu18.04TLS上搭建起了 CUDA:9.0+cuDNN7.0+tensorflow-gpu 1.9 的训练环境。本篇文章将介绍如何制作自己的数据集,并训练模型。

本文训练数据集包括从VOC数据集中提取出6095张人体图片,以及使用LabelImg工具标注的200张python爬虫程序获取的人体图片作为补充。

一、爬取人体图片并标记
# coding=utf-8
"""根据搜索词下载百度图片"""
import re
import sys
import urllib
import requests


def getPage(keyword, page, n):
    page = page * n
    keyword = urllib.parse.quote(keyword, safe='/')
    url_begin = "http://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word="
    url = url_begin + keyword + "&pn=" + str(page) + "&gsm=" + str(hex(page)) + "&ct=&ic=0&lm=-1&width=0&height=0"
    return url


def get_onepage_urls(onepageurl):
    try:
        html = requests.get(onepageurl).text
    except Exception as e:
        print(e)
        pic_urls = []
        return pic_urls
    pic_urls = re.findall('"objURL":"(.*?)",', html, re.S)
    return pic_urls


def down_pic(pic_urls):
    """给出图片链接列表, 下载所有图片"""
    for i, pic_url in enumerate(pic_urls):
        try:
            pic = requests.get(pic_url, timeout=15)
            string = str(i + 1) + '.jpg'
            with open(string, 'wb') as f:
                f.write(pic.content)
                print('成功下载第%s张图片: %s' % (str(i + 1), str(pic_url)))
        except Exception as e:
            print('下载第%s张图片时失败: %s' % (str(i + 1), str(pic_url)))
            print(e)
            continue


if __name__ == '__main__':
    keyword = '行人图片'  # 关键词, 改为你想输入的词即可, 相当于在百度图片里搜索一样
    page_begin = 0
    page_number = 100
    image_number = 3
    all_pic_urls = []
    while 1:
        if page_begin > image_number:
            break
        print("第%d次请求数据", [page_begin])
        url = getPage(keyword, page_begin, page_number)
        onepage_urls = get_onepage_urls(url)
        page_begin += 1

        all_pic_urls.extend(onepage_urls)

    down_pic(list(set(all_pic_urls)))
image

使用labelimg标记图片

image
二、从VOC数据集里提取出人体图片
import os
import os.path
import shutil

fileDir_ann = "D:\\VOC\\VOCdevkit\\VOC2012\\Annotations"
fileDir_img = "D:\\VOC\\VOCdevkit\\VOC2012\\JPEGImages\\"
saveDir_img = "D:\\VOC\\VOCdevkit\\VOC2012\\JPEGImages_ssd\\"

if not os.path.exists(saveDir_img):
    os.mkdir(saveDir_img)

names = locals()

for files in os.walk(fileDir_ann):
    for file in files[2]:



        saveDir_ann = "D:\\VOC\\VOCdevkit\\VOC2012\\Annotations_ssd\\"
        if not os.path.exists(saveDir_ann):
            os.mkdir(saveDir_ann)

        fp = open(fileDir_ann + '\\' + file)
        saveDir_ann = saveDir_ann + file
        fp_w = open(saveDir_ann, 'w')
        classes = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', '>cat<', 'chair', 'cow',
                   'diningtable', \
                   'dog', 'horse', 'motorbike', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor', 'person']

        lines = fp.readlines()

        ind_start = []
        ind_end = []
        lines_id_start = lines[:]
        lines_id_end = lines[:]

        while "\t<object>\n" in lines_id_start:
            a = lines_id_start.index("\t<object>\n")
            ind_start.append(a)
            lines_id_start[a] = "delete"

        while "\t</object>\n" in lines_id_end:
            b = lines_id_end.index("\t</object>\n")
            ind_end.append(b)
            lines_id_end[b] = "delete"

        i = 0
        for k in range(0, len(ind_start)):
            for j in range(0, len(classes)):
                if classes[j] in lines[ind_start[i] + 1]:
                    a = ind_start[i]
                    names['block%d' % k] = [lines[a], lines[a + 1], \
                                            lines[a + 2], lines[a + 3], lines[a + 4], \
                                            lines[a + 5], lines[a + 6], lines[a + 7], \
                                            lines[a + 8], lines[a + 9], lines[a + 10], \
                                            lines[ind_end[i]]]
                    break
            i += 1

        classes1 = '\t\t<name>person</name>\n'



        string_start = lines[0:ind_start[0]]
        string_end = [lines[len(lines) - 1]]

        a = 0
        for k in range(0, len(ind_start)):
            if classes1 in names['block%d' % k]:
                a += 1
                string_start += names['block%d' % k]



        string_start += string_end
        for c in range(0, len(string_start)):
            fp_w.write(string_start[c])
        fp_w.close()

        if a == 0:
            os.remove(saveDir_ann)
        else:
            name_img = fileDir_img + os.path.splitext(file)[0] + ".jpg"
            shutil.copy(name_img, saveDir_img)
        fp.close()

三、修改YOLOv3 tiny 配置文件
  • yolov3-tiny.cfg

batch = 64

max_batchs=500200 迭代次数

learning_rate = 0.001

steps = 400000,450000 scales =.1,.1 学习率在400000和450000次时缩小10倍

class = 1 设置单类别

image
  • 删除voc.names中其余名字,只保留person
  • 修改voc.data中classes值为1
四、下载预训练权重开始训练

预训练权重可以减少前期的迭代次数,加速训练过程。

wget https://pjreddie.com/media/files/darknet53.conv.74

开始训练:

./darknet detector train cfg/voc.data cfg/yolov3-voc-tiny.cfg darknet53.conv.74

image

通过绘制训练过程的loss曲线可知,开始时loss下降较快,之后开始在一水平线上波动。

训练结束得到yolov3-voc_final.weights模型文件。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容