如何保证 redis 的高并发和高可用?redis 的主从复制原理能介绍一下么?redis 的哨兵原理能介绍一 下么?

面试官心理分析

其实问这个问题,主要是考考你,redis 单机能承载多高并发?如果单机扛不住如何扩容扛更多的并发?

redis 会不会挂?既然 redis 会挂那怎么保证 redis 是高可用的?

其实针对的都是项目中你肯定要考虑的一些问题,如果你没考虑过,那确实你对生产系统中的问题思考太少


面试题剖析

如果你用 redis 缓存技术的话,肯定要考虑如何用 redis 来加多台机器,保证 redis 是高并发的,还有

就是如何让 redis 保证自己不是挂掉以后就直接死掉了,即 redis 高可用。

由于此节内容较多,因此,会分为两个小节进行讲解。


Redis 主从架构:

单机的 redis,能够承载的 QPS 大概就在上万到几万不等。对于缓存来说,一般都是用来支撑读高并发的。

因此架构做成主从(master-slave)架构,一主多从,主负责写,并且将数据复制到其它的 slave 节点,从节点负责读。所有的读请求全部走从节点。这样也可以很轻松实现水平扩容,支撑读高并发。


redis replication -> 主从架构 -> 读写分离 -> 水平扩容支撑读高并发

redis replication 的核心机制

redis 采用异步方式复制数据到 slave 节点,不过 redis2.8 开始,slave node 会周期性地确认

自己每次复制的数据量;

一个 master node 是可以配置多个 slave node 的;

slave node 也可以连接其他的 slave node;

slave node 做复制的时候,不会 block master node 的正常工作;

slave node 在做复制的时候,也不会 block 对自己的查询操作,它会用旧的数据集来提供服务;但是复制完成的时候,需要删除旧数据集,加载新数据集,这个时候就会暂停对外服务了;

slave node 主要用来进行横向扩容,做读写分离,扩容的 slave node 可以提高读的吞吐量。

注意,如果采用了主从架构,那么建议必须开启 master node 的持久化,不建议用 slave node 作为master node 的数据热备,因为那样的话,如果你关掉 master 的持久化,可能在 master 宕机重启的时候数据是空的,然后可能一经过复制, slave node 的数据也丢了。

另外,master 的各种备份方案,也需要做。万一本地的所有文件丢失了,从备份中挑选一份 rdb 去恢复master,这样才能确保启动的时候,是有数据的,即使采用了后续讲解的高可用机制,slave node 可以自动接管 master node,但也可能 sentinel 还没检测到 master failure,master node 就自动重启了,还是可能导致上面所有的 slave node 数据被清空。


redis 主从复制的核心原理

当启动一个 slave node 的时候,它会发送一个 PSYNC 命令给 master node。
如果这是 slave node 初次连接到 master node,那么会触发一次 full resynchronization 全量复制。
此时 master 会启动一个后台线程,开始生成一份 RDB 快照文件,同时还会将从客户端 client 新收到的所有写命令缓存在内存中。RDB 文件生成完毕后, master 会将这个 RDB 发送给 slave,slave 会先写入本地磁盘,然后再从本地磁盘加载到内存中,接着 master 会将内存中缓存的写命令发送到 slave,slave 也会同步这些数据。slave node 如果跟 master node 有网络故障,断开了连接,会自动重连,连接之后 master node 仅会复制给 slave 部分缺少的数据。


主从复制的断点续传

从 redis2.8 开始,就支持主从复制的断点续传,如果主从复制过程中,网络连接断掉了,那么可以接着上次复制的地方,继续复制下去,而不是从头开始复制一份。

master node 会在内存中维护一个 backlog,master 和 slave 都会保存一个 replica offset 还有一个master run id,offset 就是保存在 backlog 中的。如果 master 和 slave 网络连接断掉了,slave 会让 master 从上次 replica offset 开始继续复制,如果没有找到对应的 offset,那么就会执行一次 resynchronization。

如果根据 host+ip 定位 master node,是不靠谱的,如果 master node 重启或者数据出现了变化,那么 slave node 应该根据不同的 run id 区分。


无磁盘化复制

master 在内存中直接创建 RDB,然后发送给 slave,不会在自己本地落地磁盘了。只需要在配置文件中开启 repl-diskless-sync yes 即可。

repl-diskless-sync yes

# 等待 5s 后再开始复制,因为要等更多 slave 重新连接过来

repl-diskless-sync-delay 5


过期 key 处理

slave 不会过期 key,只会等待 master 过期 key。如果 master 过期了一个 key,或者通过 LRU 淘汰了一个 key,那么会模拟一条 del 命令发送给 slave。


复制的完整流程

slave node 启动时,会在自己本地保存 master node 的信息,包括 master node 的 host 和 ip,但是复制流程没开始。

slave node 内部有个定时任务,每秒检查是否有新的 master node 要连接和复制,如果发现,就跟 master node 建立 socket 网络连接。然后 slave node 发送 ping 命令给 master node。如果 master 设置了requirepass,那么 slave node 必须发送 masterauth 的口令过去进行认证。master node 第一次执行全量复制,将所有数据发给 slave node。而在后续,master node 持续将写命令,异步复制给 slave node。



全量复制

 master 执行 bgsave ,在本地生成一份 rdb 快照文件。

 master node 将 rdb 快照文件发送给 slave node,如果 rdb 复制时间超过 60 秒(repl-timeout),那么 slave node 就会认为复制失败,可以适当调大这个参数(对于千兆网卡的机器,一般每秒传输 100MB,6G 文件,很可能超过 60s)

 master node 在生成 rdb 时,会将所有新的写命令缓存在内存中,在 slave node 保存了 rdb 之后,再将新的写命令复制给 slave node。

 如果在复制期间,内存缓冲区持续消耗超过 64MB,或者一次性超过 256MB,那么停止复制,复制失败。

client-output-buffer-limit slave 256MB 64MB 60

 slave node 接收到 rdb 之后,清空自己的旧数据,然后重新加载 rdb 到自己的内存中,同时基于旧的数据版本对外提供服务。

 如果 slave node 开启了 AOF,那么会立即执行 BGREWRITEAOF,重写 AOF。


增量复制

 如果全量复制过程中,master-slave 网络连接断掉,那么 slave 重新连接 master 时,会触发增量复制。

 master 直接从自己的 backlog 中获取部分丢失的数据,发送给 slave node,默认 backlog 就是1MB。

 master 就是根据 slave 发送的 psync 中的 offset 来从 backlog 中获取数据的。


heartbeat

主从节点互相都会发送 heartbeat 信息。

master 默认每隔 10 秒 发送一次 heartbeat,slave node 每隔 1 秒 发送一个 heartbeat。


异步复制

master 每次接收到写命令之后,先在内部写入数据,然后异步发送给 slave node。


redis 如何才能做到高可用

如果系统在 365 天内,有 99.99% 的时间,都是可以哗哗对外提供服务的,那么就说系统是高可用的。

一个 slave 挂掉了,是不会影响可用性的,还有其它的 slave 在提供相同数据下的相同的对外的查询服务。

但是,如果 master node 死掉了,会怎么样?没法写数据了,写缓存的时候,全部失效了。slave node 还有什么用呢,没有 master 给它们复制数据了,系统相当于不可用了。

redis 的高可用架构,叫做 failover 故障转移,也可以叫做主备切换。

master node 在故障时,自动检测,并且将某个 slave node 自动切换为 master node 的过程,叫做主备切换。这个过程,实现了 redis 的主从架构下的高可用。


Redis 哨兵集群实现高可用:

哨兵的介绍

sentinel,中文名是哨兵。哨兵是 redis 集群机构中非常重要的一个组件,主要有以下功能:

        集群监控:负责监控 redis master 和 slave 进程是否正常工作。

        消息通知:如果某个 redis 实例有故障,那么哨兵负责发送消息作为报警通知给管理员。

        故障转移:如果 master node 挂掉了,会自动转移到 slave node 上。

        配置中心:如果故障转移发生了,通知 client 客户端新的 master 地址。

哨兵用于实现 redis 集群的高可用,本身也是分布式的,作为一个哨兵集群去运行,互相协同工作。

        故障转移时,判断一个 master node 是否宕机了,需要大部分的哨兵都同意才行,涉及到了分布式选举的问题。

        即使部分哨兵节点挂掉了,哨兵集群还是能正常工作的,因为如果一个作为高可用机制重要组成部分的故障转移系统本身是单点的,那就很坑爹了。


哨兵的核心知识

哨兵至少需要 3 个实例,来保证自己的健壮性。

 哨兵 + redis 主从的部署架构,是不保证数据零丢失的,只能保证 redis 集群的高可用性。

 对于哨兵 + redis 主从这种复杂的部署架构,尽量在测试环境和生产环境,都进行充足的测试和演练。

哨兵集群必须部署 2 个以上节点,如果哨兵集群仅仅部署了 2 个哨兵实例,quorum = 1。

+----+            +----+

| M1 |---------| R1 |

| S1 |           | S2 |

+----+          +----+

配置 quorum=1,如果 master 宕机, s1 和 s2 中只要有 1 个哨兵认为 master 宕机了,就可以进行切换,同时 s1 和 s2 会选举出一个哨兵来执行故障转移。但是同时这个时候,需要 majority,也就是大多数哨兵都是运行的。

2 个哨兵,majority=2

3 个哨兵,majority=2

4 个哨兵,majority=2

5 个哨兵,majority=3

...

如果此时仅仅是 M1 进程宕机了,哨兵 s1 正常运行,那么故障转移是 OK 的。但是如果是整个 M1 和 S1运行的机器宕机了,那么哨兵只有 1 个,此时就没有 majority 来允许执行故障转移,虽然另外一台机器上还有一个 R1,但是故障转移不会执行。

经典的 3 节点哨兵集群是这样的:

           +----+

           | M1 |

           | S1 |

          +----+

              |

+----+     |    +----+

| R2 |----+----| R3 |

| S2 |            | S3 |

+----+           +----+

配置 quorum=2,如果 M1 所在机器宕机了,那么三个哨兵还剩下 2 个,S2 和 S3 可以一致认为 master宕机了,然后选举出一个来执行故障转移,同时 3 个哨兵的 majority 是 2,所以还剩下的 2 个哨兵运行着,就可以允许执行故障转移。


redis 哨兵主备切换的数据丢失问题

两种情况和导致数据丢失

主备切换的过程,可能会导致数据丢失:

1.异步复制导致的数据丢失

因为 master->slave 的复制是异步的,所以可能有部分数据还没复制到 slave,master 就宕机了,此时这部分数据就丢失了。

2.脑裂导致的数据丢失

脑裂,也就是说,某个 master 所在机器突然脱离了正常的网络,跟其他 slave 机器不能连接,但是实际上 master 还运行着。此时哨兵可能就会认为 master 宕机了,然后开启选举,将其他 slave 切换成了master。这个时候,集群里就会有两个 master ,也就是所谓的脑裂。

此时虽然某个 slave 被切换成了 master,但是可能 client 还没来得及切换到新的 master,还继续向旧master 写数据。因此旧 master 再次恢复的时候,会被作为一个 slave 挂到新的 master 上去,自己的数据会清空,重新从新的 master 复制数据。而新的 master 并没有后来 client 写入的数据,因此,这部分数据也就丢失了。


数据丢失问题的解决方案

进行如下配置:
min-slaves-to-write 1
min-slaves-max-lag 10
表示,要求至少有 1 个 slave,数据复制和同步的延迟不能超过 10 秒。
如果说一旦所有的 slave,数据复制和同步的延迟都超过了 10 秒钟,那么这个时候,master 就不会再接收任何请求了。

        减少异步复制数据的丢失

有了 min-slaves-max-lag 这个配置,就可以确保说,一旦 slave 复制数据和 ack 延时太长,就认为可能 master 宕机后损失的数据太多了,那么就拒绝写请求,这样可以把 master 宕机时由于部分数据未同步到 slave 导致的数据丢失降低的可控范围内。

        减少脑裂的数据丢失

如果一个 master 出现了脑裂,跟其他 slave 丢了连接,那么上面两个配置可以确保说,如果不能继续给指定数量的 slave 发送数据,而且 slave 超过 10 秒没有给自己 ack 消息,那么就直接拒绝客户端的写请求。因此在脑裂场景下,最多就丢失 10 秒的数据。


sdown 和 odown 转换机制

        sdown 是主观宕机,就一个哨兵如果自己觉得一个 master 宕机了,那么就是主观宕机

       odown 是客观宕机,如果 quorum 数量的哨兵都觉得一个 master 宕机了,那么就是客观宕机

sdown 达成的条件很简单,如果一个哨兵 ping 一个 master,超过了 is-master-down-after-milliseconds 指定的毫秒数之后,就主观认为 master 宕机了;如果一个哨兵在指定时间内,收到了 quorum 数量的其它哨兵也认为那个 master 是 sdown 的,那么就认为是 odown了


哨兵集群的自动发现机制

哨兵互相之间的发现,是通过 redis 的 pub/sub 系统实现的,每个哨兵都会往 __sentinel__:hello 这个 channel 里发送一个消息,这时候所有其他哨兵都可以消费到这个消息,并感知到其他的哨兵的存在。每隔两秒钟,每个哨兵都会往自己监控的某个 master+slaves 对应的 __sentinel__:hello channel 里发送一个消息,内容是自己的 host、ip 和 runid 还有对这个 master 的监控配置。

每个哨兵也会去监听自己监控的每个 master+slaves 对应的 __sentinel__:hello channel,然后去感知到同样在监听这个 master+slaves 的其他哨兵的存在。

每个哨兵还会跟其他哨兵交换对 master 的监控配置,互相进行监控配置的同步。


slave 配置的自动纠正

哨兵会负责自动纠正 slave 的一些配置,比如 slave 如果要成为潜在的 master 候选人,哨兵会确保slave 复制现有 master 的数据;如果 slave 连接到了一个错误的 master 上,比如故障转移之后,那么哨兵会确保它们连接到正确的 master 上。


slave->master 选举算法

如果一个 master 被认为 odown 了,而且 majority 数量的哨兵都允许主备切换,那么某个哨兵就会执行主备切换操作,此时首先要选举一个 slave 来,会考虑 slave 的一些信息:

  跟 master 断开连接的时长

  slave 优先级

  复制 offset

  run id

如果一个 slave 跟 master 断开连接的时间已经超过了 down-after-milliseconds 的 10 倍,外加

master 宕机的时长,那么 slave 就被认为不适合选举为 master。

(down-after-milliseconds * 10) + milliseconds_since_master_is_in_SDOWN_state

接下来会对 slave 进行排序:

       按照 slave 优先级进行排序,slave priority 越低,优先级就越高。

      如果 slave priority 相同,那么看 replica offset,哪个 slave 复制了越多的数据,offset 越

靠后,优先级就越高。

      如果上面两个条件都相同,那么选择一个 run id 比较小的那个 slave。


quorum 和 majority

每次一个哨兵要做主备切换,首先需要 quorum 数量的哨兵认为 odown,然后选举出一个哨兵来做切换,这个哨兵还需要得到 majority 哨兵的授权,才能正式执行切换。

如果 quorum < majority,比如 5 个哨兵,majority 就是 3,quorum 设置为 2,那么就 3 个哨兵授权就可以执行切换。

但是如果 quorum >= majority,那么必须 quorum 数量的哨兵都授权,比如 5 个哨兵,quorum 是 5,那么必须 5 个哨兵都同意授权,才能执行切换。


configuration epoch

哨兵会对一套 redis master+slaves 进行监控,有相应的监控的配置。

执行切换的那个哨兵,会从要切换到的新 master(salve->master)那里得到一个 configuration epoch,这就是一个 version 号,每次切换的 version 号都必须是唯一的。

如果第一个选举出的哨兵切换失败了,那么其他哨兵,会等待 failover-timeout 时间,然后接替继续执行切换,此时会重新获取一个新的 configuration epoch,作为新的 version 号。


configuration 传播

哨兵完成切换之后,会在自己本地更新生成最新的 master 配置,然后同步给其他的哨兵,就是通过之前说的 pub/sub 消息机制。

这里之前的 version 号就很重要了,因为各种消息都是通过一个 channel 去发布和监听的,所以一个哨兵完成一次新的切换之后,新的 master 配置是跟着新的 version 号的。其他的哨兵都是根据版本号的大小来更新自己的 master 配置的。


总结

redis 实现高并发主要依靠主从架构,一主多从,一般来说,很多项目其实就足够了,单主用来写入数据,单机几万 QPS,多从用来查询数据,多个从实例可以提供每秒 10w 的 QPS。
如果想要在实现高并发的同时,容纳大量的数据,那么就需要 redis 集群,使用 redis 集群之后,可以提供每秒几十万的读写并发。
redis 高可用,如果是做主从架构部署,那么加上哨兵就可以了,就可以实现,任何一个实例宕机,可以进行主备切换。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,311评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,339评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,671评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,252评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,253评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,031评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,340评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,973评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,466评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,937评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,039评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,701评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,254评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,259评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,497评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,786评论 2 345

推荐阅读更多精彩内容