KNN - 基于scikit实现程序

本文之编写程序涉及到API介绍,程序的完整实现,具体算法原理请查看之前所写的KNN算法介绍

一、基础准备

1、python 基础

2、numpy 基础

np.mean
求平均值

print(np.mean([1,2,3,4]))
# >> 2.5

3、scikit 基础

fit
(X, y)
符合模型使用X作为训练数据和y值作为目标
get_params
([deep])
得到的参数估计量。
.

kneighbors
([X, n_neighbors, return_distance])
发现的K-neighbors点。

kneighbors_graph
([X, n_neighbors, mode])
计算(加权)图k-Neighbors X点

predict
(X)
预测类标签所提供的数据

predict_proba
(X)
回归测试数据的概率估计X。

score
(X, y[, sample_weight])
返回意味着在给定的精度测试数据和标签。

set_params
(**params)
设置的参数估计量。
.

二、完整程序

# -*- coding: utf-8 -*-
import numpy as np
from sklearn import neighbors, preprocessing
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import classification_report
from sklearn.cross_validation import train_test_split

def file2Mat(testFileName, parammterNumber):
    fr = open(testFileName)
    lines = fr.readlines()
    lineNums = len(lines)
    resultMat = np.zeros((lineNums, parammterNumber))
    classLabelVector = []
    for i in range(lineNums):
        line = lines[i].strip()
        itemMat = line.split('\t')
        resultMat[i, :] = itemMat[0:parammterNumber]
        classLabelVector.append(itemMat[-1])
    fr.close()
    return resultMat, classLabelVector;


# 为了防止某个属性对结果产生很大的影响,所以有了这个优化,比如:10000,4.5,6.8 10000就对结果基本起了决定作用
def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normMat = np.zeros(np.shape(dataSet))
    size = normMat.shape[0]
    normMat = dataSet - np.tile(minVals, (size, 1))
    normMat = normMat / np.tile(ranges, (size, 1))
    return normMat, minVals, ranges

if __name__=='__main__':
    trainigSetFileName = 'data\\datingTrainingSet.txt'
    testFileName = 'data\\datingTestSet.txt'

    # 读取训练数据
    trianingMat, classLabel = file2Mat(trainigSetFileName, 3)
    # 对数据进行归一化的处理
    autoNormTrianingMat, minVals, ranges = autoNorm(trianingMat)
    # 读取测试数据
    testMat, testLabel = file2Mat(testFileName, 3)
    autoNormTestMat = []
    for i in range(len(testLabel)):
        autoNormTestMat.append( (testMat[i] - minVals) / ranges)
    # testMat = preprocessing.normalize(testMat)
    print(autoNormTestMat)
    # ''''' 训练KNN分类器 '''
    clf = neighbors.KNeighborsClassifier(n_neighbors=5, algorithm='kd_tree')
    clf.fit(autoNormTrianingMat, classLabel)

    answer = clf.predict(autoNormTestMat)

    print(np.sum(answer != testLabel))

    # 计算分数
    print(clf.score(autoNormTestMat, testLabel))
    print(np.mean(answer == testLabel))
    print(clf.predict([0.44832535,  0.39805139,  0.56233353]))
    print(clf.predict_proba([0.44832535,  0.39805139,  0.56233353]))
    # '''''准确率与召回率'''
    # precision, recall, thresholds = precision_recall_curve(testLabel, clf.predict(testMat))
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容