pytorch 函数理解

1、torch.nn.Unfold

函数作用:

unfold 是展开的意思,在 torch 中则是只卷不积,相当于只滑窗,不进行元素相乘

参数:

kernel_size: _size_any_t, 卷积核的大小

dilation: _size_any_t=1, 卷积核元素之间的空洞个数

padding: _size_any_t=0, 填充特征四周的列数,默认为 0,则不填充

stride: _size_any_t=1,卷积核移动的步长

函数理解:

参考资料:

PYTORCH实现手动滑窗,卷积(利用UNFOLD,FOLD操作)


unfold 过程:

① 对于 batch 里的每个数据分别进行 unfold

② 分别在每个数据的每个通道上,使用大小为 k*k 的卷积核进行从左往右,从上向下的滑窗

③ 对于在每个通道上分别得到的第一个滑窗区域,分别进行 reshape 成行向量,然后把在所有通道上得到的行向量,进行横向拼接,得到新的行向量

④ 对于在每个通道上得到的滑窗区域都进行步骤 ③ 的操作,直到所有的滑窗区域都处理完

⑤ 将步骤 ③ 和 步骤 ④ 中得到的行向量,进行纵向拼接,得到一个矩阵

⑥ 完成 unfold 操作,将 batch 中每个数据进行 unfold 得到的矩阵进行堆放,得到输出结果

例子:

x = torch.range(1, 2*3*4*5)

print(x.shape)

batch_x = x.reshape([2, 3, 4, 5])

print(batch_x.shape)

# unfold 是展开的意思,在 torch 中则是只卷不积,相当于只滑窗,不进行元素相乘

unfold = torch.nn.Unfold(3)

res = unfold(batch_x)

print(res.shape)

结果:

torch.Size([2, 27, 6])


分析:

假设输入的 batch_x 维度为 [2, 3, 4, 5],其中 2 是批的数据量大小 B, 3 是通道数 C,4 是高度 H,5 是宽度 W 。使用的卷积核大小 K 为 3*3,移动步长 S 为 1,padding 为 0

① 在 B 的每个数据上进行 unfold

② 同时在每个通道上的最左上角开始进行滑动,对于每个通道,得到大小为 9 的滑动区域,然后进行 Reshape 成维度为 [1, 9] 的行向量。然后将在所有 3 个通道上得到的 3 个行向量,进行横向拼接,得到维度为 [1, 27] 的行向量。

③ 依次将卷积核按照从左到右,从上往下的顺序,按照步长 1 进行滑动,每个滑动的区域经过步骤 ② 中处理后都能得到一个维度为 [1, 27] 的行向量,共得到 6 个维度为 [1, 27],然后纵向堆叠成维度为 [6, 27] 的矩阵

④ 将每个数据经过 unfold 得到的维度为 [6, 27]  的矩阵进行堆叠成维度为 [2, 27, 6]  的张量

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容