Android音视频处理之音频混音

数字音频基本概念

在实现功能之前,我们先来了解一下数字音频的有关属性:

采样频率(Sample Rate):每秒采集声音的数量,它用赫兹(Hz)来表示。(采样率越高越靠近原声音的波形)
采样精度(Bit Depth):指记录声音的动态范围,它以位(Bit)为单位。(声音的幅度差)
声音通道(Channel):声道数。比如左声道右声道。

采样量化后的音频最终是一串数字,声音的大小(幅度)会体现在这个每个数字数值大小上;而声音的高低(频率)和声音的音色(Timbre)都和时间维度有关,会体现在数字之间的差异上。

音频的编码与解码

自然界中的声音非常复杂,波形极其复杂,通常我们采用的是脉冲代码调制编码,即PCM编码。PCM通过抽样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。本篇文章介绍的混音就是对PCM数据做处理。

相对自然界的信号,任何数字音频编码方案都是有损的,因为无法完全还原。在计算机应用中,能够达到最高保真水平的就是PCM编码,平时常见的WAV文件就是在PCM数据前加上一个44字节的RIFF头部组成的。

音频信号在时域和频域上具有相关性,也即存在数据冗余,音频编码的实质是减少音频中的冗余。

那么,解码的目的就是让编码后的数据恢复成PCM源数据。

AAC,Mp3 --> Decoder --> Audio PCM Data

常见的音频编码格式有以下这些:

public static final String MIMETYPE_AUDIO_AMR_NB = "audio/3gpp";
public static final String MIMETYPE_AUDIO_AMR_WB = "audio/amr-wb";
public static final String MIMETYPE_AUDIO_MPEG = "audio/mpeg";
public static final String MIMETYPE_AUDIO_AAC = "audio/mp4a-latm";
public static final String MIMETYPE_AUDIO_QCELP = "audio/qcelp";
public static final String MIMETYPE_AUDIO_VORBIS = "audio/vorbis";
public static final String MIMETYPE_AUDIO_OPUS = "audio/opus";
public static final String MIMETYPE_AUDIO_G711_ALAW = "audio/g711-alaw";
public static final String MIMETYPE_AUDIO_G711_MLAW = "audio/g711-mlaw";
public static final String MIMETYPE_AUDIO_RAW = "audio/raw";
public static final String MIMETYPE_AUDIO_FLAC = "audio/flac";
public static final String MIMETYPE_AUDIO_MSGSM = "audio/gsm";
public static final String MIMETYPE_AUDIO_AC3 = "audio/ac3";
public static final String MIMETYPE_AUDIO_EAC3 = "audio/eac3";
音频的混音

音频混音的原理: 量化的语音信号的叠加等价于空气中声波的叠加。

反应到音频数据上,也就是把同一个声道的数值进行简单的相加,但是这样同时会产生一个问题,那就是相加的结果可能会溢出,当然为了解决这个问题已经有很多方案了,在这里我们采用简单的平均算法。

下面的演示程序适用于音频文件采样率、通道数、采样精度一样的情况:

/**
 * 混合音频,使用平均算法
 *
 * @param mixedBytes 输出混合后的数据到该byte数组
 * @param shorts1    需要混合的short数组1
 * @param shorts2    需要混合的short数组2
 */
private void mixRawAudioBytes(byte[] mixedBytes, short[] shorts1, short[] shorts2) {
    for (int i = 0; i < shorts2.length; i++) {
        shorts1[i] = (short) ((shorts2[i] + shorts1[i]) / 2);
    }

    for (int i = 0; i < shorts1.length; i++) {
        mixedBytes[i * 2] = (byte) (shorts1[i] & 0x00FF);
        mixedBytes[i * 2 + 1] = (byte) ((shorts1[i] & 0xFF00) >> 8);
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容