推荐系统-FM(Factorization Machine)模型

1. 介绍

在进行CTR(click through rate)预估时,除了单个特征外,通常要进行特征组合,FM算法是进行特征组合时的常见算法。

2. one-hot的问题

FM主要是为了解决数据稀疏的情况下,特征组合问题。一般categories特征经过one-hot编码以后,样本数据会变得很稀疏,假设有10万个item,如果对item的这个维度进行one-hot编码,这个维度的数据稀疏性就是十万分之一,所以数据的稀疏性是,是实际应用中常见的挑战。

one-hot编码的另一个问题是特征空间变大,上面的10万个item,编码后样本空间有一个categories会变成10万维,特征空间会暴增。

3. 特征组合

普通的线性模型,各个特征都是独立考虑的,没有考虑到特征之间的相关性,如果能找出有关联的特征,会有很大的帮助。一般的线性模型为:


从上面公式中看出,一般的线性模型是不考虑特征间的关联的,为了描述特征间的多样性,我们采用多项式模型。在多项式中,特征x_ix_j 的组合用x_ix_j 表示,现在讨论二阶多项式模型。

其中,n表示样本的特征数量,x_i 表示第i个特征。公式的第三项就是加入了特征组合的部分。

4. FM求解

从上面的多项式可以看出,特征组合的部分,特征相关参数有n(n-1)/2 个。但是在数据很稀疏的情况下,x_i,x_j 都不为0的情况非常少,这样使得w_{ij} 无法通过训练得出。

为了求出w_{ij} , 对每一个特征分量x_i 引入隐向量V_i=(v_{i1},v_{i2}...v_{ik}) 。将每个w_{ij} 用隐向量的内积<v_i,v_j> 表示,然后利用v_i,v_j^Tw_{ij}​ 进行矩阵求解。

那么w_{ij} 可以表示为:

具体过程:


5. FM总结

  • FM降低了特征组合项学习不充分的影响。

    参数学习有之前学习w_{ij} 的过程,变成了学习n个单特征对应的k维隐向量的过程。

  • FM提高了预估能力。

    由于FM学习的参数为单特征的隐向量,所以训练集中没有出现的特征组合的样本,FM模型依然可以用来预估。

  • FM提高了参数学习效率,

    参数个数由(n^2+n+1) 变成了(nk+n+1) 个,模型复杂的由O(mn^2) 变为O(mnk),m为训练样本数。

FM是一个可以表示特征之间关系的函数表达式,可以推广到更高阶,将多个特征之间的关联信息考虑进来。

参考资料

http://www.52caml.com/head_first_ml/ml-chapter9-factorization-family/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容