keras构建神经网络
第一步选择模型
序贯模型或函数式模型
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.datasets import mnist
import numpy
model = Sequential()#模型
第二步构建网络层
输入层,隐藏层,输出层
包括的函数:激活函数,正则项,约束项,初始化方法
model.add(Dense(500,input_shape=(784,))) # 输入层,28*28=784
model.add(Activation('tanh')) # 激活函数是tanh
model.add(Dropout(0.5)) # 采用50%的dropout
model.add(Dense(500)) # 隐藏层节点500个
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(10)) # 输出结果是10个类别,所以维度是10
model.add(Activation('softmax')) # 最后一层用softmax作为激活函数
(1)Dense(500,input_shape=(784,)))
dense属于网络层
500是输出的维度,完整是(,500)即输出n个500维的数据流
784是输入维度,完整是(,784)
第三步编译
优化函数,损失函数,性能评估
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # 优化函数,设定学习率(lr)等参数
model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode='categorical') # 使用交叉熵作为loss函数
第四步:训练
.fit的一些参数
batch_size:对总的样本数进行分组,每组包含的样本数量
epochs :训练次数
shuffle:是否把数据随机打乱之后再进行训练
validation_split:拿出百分之多少用来做交叉验证
verbose:屏显模式 0:不输出 1:输出进度 2:输出每次的训练结果
(X_train, y_train), (X_test, y_test) = mnist.load_data() # 使用Keras自带的mnist工具读取数据(第一次需要联网)
# 由于mist的输入数据维度是(num, 28, 28),这里需要把后面的维度直接拼起来变成784维
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1] * X_train.shape[2])
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1] * X_test.shape[2])
Y_train = (numpy.arange(10) == y_train[:, None]).astype(int)
Y_test = (numpy.arange(10) == y_test[:, None]).astype(int)
model.fit(X_train,Y_train,batch_size=200,epochs=50,shuffle=True,verbose=0,validation_split=0.3)
model.evaluate(X_test, Y_test, batch_size=200, verbose=0)
第五步输出
print("test set")
scores = model.evaluate(X_test,Y_test,batch_size=200,verbose=0)
print("")
print("The test loss is %f" % scores)
result = model.predict(X_test,batch_size=200,verbose=0)
result_max = numpy.argmax(result, axis = 1)
test_max = numpy.argmax(Y_test, axis = 1)
result_bool = numpy.equal(result_max, test_max)
true_num = numpy.sum(result_bool)
print("")
print("The accuracy of the model is %f" % (true_num/len(result_bool)))