(二)RDD概述及五大特性

一、什么是RDD
A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable,partitioned collection of elements that can be operated on in parallel.
RDD是一个弹性的分布式的数据集,是spark的基本抽象,RDD是不可变的,并且它由多个partition构成(可能分布在多台机器上,可以存memory上,也可以存disk里等等),可以进行并行操作
弹性:分布式计算时可容错
不可变:一旦产生就不能被改变
RDD源码如下:(https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/rdd/RDD.scala

abstract class RDD[T: ClassTag](
    @transient private var _sc: SparkContext,
    @transient private var deps: Seq[Dependency[_]]
  ) extends Serializable with Logging {
.....
}

解读:
1)抽象类:不能直接使用,需要借助于子类实现,使用时直接使用其子类即可
2)序列化:在分布式计算框架里,序列化框架性能的好坏直接影响整个框架性能的优劣
3)logging:日志记录,2.0版本后不自带,需要自己写一个
4)T:泛型 支持各种数据类型
5)sparkcontext
6)@transient
二、RDD的5大特点
1)A list of partitions
RDD由很多partition构成,在spark中,计算式,有多少partition就对应有多少个task来执行
2)A function for computing each split
对RDD做计算,相当于对RDD的每个split或partition做计算
3)A list of dependencies on other RDDs
RDD之间有依赖关系,可溯源
4)Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
如果RDD里面存的数据是key-value形式,则可以传递一个自定义的Partitioner进行重新分区,比如可以按key的hash值分区
5)Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file)
最优的位置去计算,也就是数据的本地性
计算每个split时,在split所在机器的本地上运行task是最好的,避免了数据的移动;split有多个副本,所以preferred location不止一个
数据在哪里,应优先把作业调度到数据所在机器上,减少数据的IO和网络传输,这样才能更好地减少作业运行时间(木桶原理:作业运行时间取决于运行最慢的task所需的时间),提高性能
三、RDD5大特性在源码中的体现

 /**
   * :: DeveloperApi ::
   * Implemented by subclasses to compute a given partition.
   */
  @DeveloperApi
def compute(split: Partition, context: TaskContext): Iterator[T]

(特性2)compute函数的入参必然是partition,因为对RDD做计算相当于对每个partition做计算

/**
   * Implemented by subclasses to return the set of partitions in this RDD. This method will only
   * be called once, so it is safe to implement a time-consuming computation in it.
   *
   * The partitions in this array must satisfy the following property:
   *   `rdd.partitions.zipWithIndex.forall { case (partition, index) => partition.index == index }`
   */
protected def getPartitions: Array[Partition]

(特性1)getPartitions返回的必然是一系列Partition类型的数据组成的数组

 /**
   * Implemented by subclasses to return how this RDD depends on parent RDDs. This method will only
   * be called once, so it is safe to implement a time-consuming computation in it.
   */
protected def getDependencies: Seq[Dependency[_]] = deps

(特性3)RDD之间有依赖关系

/**
   * Optionally overridden by subclasses to specify placement preferences.
   */
protected def getPreferredLocations(split: Partition): Seq[String] = Nil

(特性5)

/** Optionally overridden by subclasses to specify how they are partitioned. */
@transient val partitioner: Option[Partitioner] = None

(特性4)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容