人脸融合?没有想象中难!

颜如玉

颜如玉 —— python + opencv 人脸融合程序,可实现类似天天P图疯狂换脸、face++人脸融合效果

项目描述

最近随着各种技术的发展,图像方面的人脸处理技术越来越广泛。各大相机软件都有美颜、贴图、换发型、变脸等功能。天天P图与Face++也都推出人脸处理的 API,不过价格方面就有点不亲民了。于是本人将之前研究完成的人脸融合算法开源出来。

本文会一步步带你了解人脸融合的实现过程。

效果对比

国际惯例,我们看看颜如玉与天天P图、Face++合成效果的对比:

模特图 与 待融合图
结果对比
  • 注:Face++ 为调用其官网 API 生成的效果,天天P图则是直接使用该 APP 生成的效果

实现步骤

零、融合函数

先看看程序入口函数

core.face_merge(src_img='images/model.jpg',
                    dst_img='images/20171030175254.jpg',
                    out_img='images/output.jpg',
                    face_area=[50, 30, 500, 485],
                    alpha=0.75,
                    blur_size=(15, 10),
                    mat_multiple=0.95)

参数含义:

  • src_img —— 模特图片
  • dst_img —— 待融合的图片
  • out_img —— 结果图片输出路径
  • face_area —— 指定模板图中进行人脸融合的人脸框位置。四个正整数数组,依次代表人脸框左上角纵坐标(top),左上角横坐标(left),人脸框宽度(width),人脸框高度(height),通过设定改参数可以减少结果的大范围变形,把变形风险控制在人脸框区域
  • alpha —— 融合比例,范围 [0,1]。数字越大融合结果包含越多融合图 (dst_img) 特征。
  • blur_size—— 模糊核大小,用于模糊人脸融合边缘,减少融合后的违和感
  • mat_multiple —— 缩放获取到的人脸心型区域

一、 检测及关键的定位

人脸的检测以及关键点定位有多种实现方案

  • 使用开源 Dlib 库检测及定位(定位68个关键点)
  • 使用腾讯平台的人脸识别及定位API (定位90个关键点)
  • 使用Face++平台的人脸识别定位API(定位106个关键点)

本文采用的是Face++的 api,因为商用情况下 Face++ 定位的定数最多

// 获取两张图片的人脸关键点(矩阵格式与数组格式)
src_matrix, src_points, err = core.face_points(src_img)
dst_matrix, dst_points, err = core.face_points(dst_img)

二、对齐人脸角度

在待融合图人像不是侧脸的情况下,我们可以同过调整平面位置及角度让其与模特图的人脸重合

    // opencv 读取图片
    src_img = cv2.imread(src_img, cv2.IMREAD_COLOR)
    dst_img = cv2.imread(dst_img, cv2.IMREAD_COLOR)

    dst_img = transformation_points(src_img=src_img, src_points=src_matrix[core.FACE_POINTS],
                                    dst_img=dst_img, dst_points=dst_matrix[core.FACE_POINTS])
  • 注:src_points 已经 dst_points 传入参数为第一步获取的人脸关键点矩阵

对齐采用“常规 Procrustes 分析法”
具体算法来源:matthewearl 个人博客步骤2
对齐结果:

结果展示

三、再次取点后融合脸部

对步骤二转换后的带融合图片再次取关键的,然后与模特图的关键点一起做三角融合成新的图片

dst_img = morph_img(src_img, src_points, dst_img, dst_points, alpha)

融合结果:


结果展示

具体的三角融合算法解说参考这篇文章

四、处理加工模特图片

再次对上一步的结果图进行取点,然后运用三角仿射将模特图片脸部轮廓、关键点变形成上一步得到的脸部关键点

src_img = tran_src(src_img, src_points, dst_points, face_area)

处理结果:


结果展示

五、将融合后的脸部贴到模特图上

最后一步是将融合后的新图片脸部区域用泊松融合算法贴到模特图上。泊松融合可直接使用opencv提供的函数

dst_img = merge_img(src_img, dst_img, dst_matrix, dst_points, k_size, mat_multiple)
def merge_img(src_img, dst_img, dst_matrix, dst_points, k_size=None, mat_multiple=None):
    face_mask = np.zeros(src_img.shape, dtype=src_img.dtype)

    for group in core.OVERLAY_POINTS:
        cv2.fillConvexPoly(face_mask, cv2.convexHull(dst_matrix[group]), (255, 255, 255))

    r = cv2.boundingRect(np.float32([dst_points[:core.FACE_END]]))

    center = (r[0] + int(r[2] / 2), r[1] + int(r[3] / 2))

    if mat_multiple:
        mat = cv2.getRotationMatrix2D(center, 0, mat_multiple)
        face_mask = cv2.warpAffine(face_mask, mat, (face_mask.shape[1], face_mask.shape[0]))

    if k_size:
        face_mask = cv2.blur(face_mask, k_size, center)

    return cv2.seamlessClone(np.uint8(dst_img), src_img, face_mask, center, cv2.NORMAL_CLONE)

函数示意图:


步骤展示

总结

融合到此就大功告成了,具体的代码已经开源在本人 Github 上。
融合后还可对结果进行美颜处理,以达到更好的效果!

感谢阅读。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容