企业型AI的应用,可少不了数据知识库的支持


AI大模型的发展离不开大量的数据和知识支持。为了更好地理解和应用AI模型,我们需要将数据和知识组织起来,以便模型能够从中获取有价值的信息。而向量数据库和其他知识库则成为了实现这一目标的有效手段。

建立向量数据库可以提供高效的数据检索和相似度匹配能力。AI大模型在进行任务时,常常需要根据输入的问题或者需求,在数据库中查找相应的数据进行处理。

在企业环境中部署大语言模型,意味着必须建立向量数据库和其他知识库,并让它们与文档存储库和语言模型实时协同工作,以产生合理的、与上下文相关的准确输出。如果没有一个高效的数据库,模型需要遍历整个数据集来进行检索,效率将会大大降低。而通过将数据转化为向量,并建立向量数据库,可以通过高效的向量索引技术进行数据查询,大大提升模型的检索速度和准确性。

例如,零售商可以使用大语言模型通过消息传递接口与客户进行对话。该模型需要访问存有实时业务数据的数据库,以调用最近的交互信息、产品目录、对话历史、退货政策、最新促销和广告、客户服务指南和常见问题的解答。

建立其他知识库可以为AI大模型提供背景知识和上下文信息。在进行任务时,模型需要了解相应领域的知识和规则,才能更好地理解和处理问题。

例如,在自然语言处理领域,建立语义库可以为模型提供词义、关联性等信息,帮助模型更好地理解语句的含义。在图像识别领域,建立图像标签库可以为模型提供图像的语义标签,提高模型对图像的理解和分类准确性。这些知识库可以为模型提供更加全面和准确的上下文信息,提升其推理和决策能力。

虽然企业大语言模型仍处于早期阶段,但人工智能的发展也是日新月异,尤其是在语言模型领域。企业大语言模型正在以前所未有的方式进行着变革。


免责声明:以上图文内容由香道滇小智进行整理,图文均来源于网络,如有侵权,请联系删除。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容