推荐系统

将个人信息过滤(IF)智能体(agent)与产品社区用户的意见结合起来以产生比单纯的基于智能体或者基于用户群更好的推荐效果的协同过滤(CF)框架。

用户想要从大量繁杂的信息中寻求最感兴趣的信息,而公司想要将他们的产品有效地推荐给用户。

Ricci等人对推荐系统给出了定义:tools which can [recommend a set of items for a user or a set of users for an item]

推荐涉及到了很多的决策[decision-making]的过程,包括知识来源(训练集)以及推荐算法。因为Rss是个性化的,并且是从已经被别人知道的且不是个性化定制的产品中进行推荐,所以Rss不仅仅可以帮助用户有效的找到感兴趣的东西,更可以帮组公司找到一个有效的方式来介绍他们的产品给潜在的用户。


应对信息超载的常见解决方案

1.信息检索(IR):完成瞬时出现的兴趣查询

是一个可以根据用户的请求从一个信息库中检索信息的系统。有学者认为IR并不能抓取到用户的偏好,并不是很有价值因为他们并没有抓取到除了用户的精确的请求之外的偏好。

2.信息过滤(IF):将新的信息流分化归类

需要一个针对用户需求和偏好地简介。最简单的系统需要用户手动的或者在一定的协助下创建这个简介。

缺点:不能应对所有的情况。尽管它能够解决冷启动的问题,并且很有效率。但是依然与有很多问题存在:在信息挖掘方面缺乏全面性,推荐内容的限制和用户的反馈的不足。

3.协同过滤(CF):我应该看哪个items(总体或者从某个集合)或者我有多喜欢这些items.

系统构建一个数据库容纳着供用户选择的项目。

协同过滤算法有很多优点:

-用户和数据友好性:可以处理分结构化信息,能够发现新的兴趣点,并没有专业知识需求,并且可以个性化推荐

-性能方面:自动化程度高,并且性能是会随着时间的推移变好的

-交互性好:协同过滤能够让用户之间互相分享选择,并且一小部分的用户额选择是会影响到推荐系统给别的用户的推荐结果。

缺点:稀疏性问题。冷启动问题以及可解释性差的问题。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容