OpenCV-Python之——图像SIFT特征提取

SIFT特征提取算法

SIFT的全称是Scale Invariant Feature Transform,尺度不变特征变换,由加拿大教授David G.Lowe提出的。是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。SIFT所查找到的关键点是一些十分突出、不会因光照、仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。SIFT特征对旋转、尺度缩放、亮度变化等保持不变性,是一种非常稳定的局部特征。

主要步骤:
  • 1.构建DOG尺度空间
  • 2.关键点搜索和定位
  • 3.方向赋值
  • 4.关键点描述子的生成
1.构建DOG尺度空间

模拟图像数据的多尺度特征,大尺度轮廓特征,小尺度细节特征。通过构建高斯金字塔(每一层用不同的参数σ做高斯模糊(加权)),保证图像在任何尺度都能有对应的特征点,即保证尺度不变性。

a.尺度空间

在一定的范围内,无论物体是大还是小,人眼都可以分辨出来。然而计算机要有相同的能力却不是那么的容易,在未知的场景中,计算机视觉并不能提供物体的尺度大小,其中的一种方法是把物体不同尺度下的图像都提供给机器,让机器能够对物体在不同的尺度下有一个统一的认知。在建立统一认知的过程中,要考虑的就是在图像在不同的尺度下都存在的特征点。

b.多分辨率图像金字塔

在早期图像的多尺度通常使用图像金字塔表示形式。图像金字塔是同一图像在不同的分辨率下得到的一组结果其生成过程一般包括两个步骤:

  1. 对原始图像进行平滑
  2. 对处理后的图像进行降采样(通常是水平、垂直方向的1/2),降采样后得到一系列不断尺寸缩小的图像。显然,一个传统的金字塔中,每一层的图像是其上一层图像长、高的各一半。

多分辨率的图像金字塔虽然生成简单,但其本质是降采样,图像的局部特征则难以保持,也就是无法保持特征的尺度不变性。

c.高斯尺度空间

我们还可以通过图像的模糊程度来模拟人在距离物体由远到近时物体在视网膜上成像过程,距离物体越近其尺寸越大图像也越模糊,这就是高斯尺度空间,使用不同的参数模糊图像(分辨率不变),是尺度空间的另一种表现形式。

我们知道图像和高斯函数进行卷积运算能够对图像进行模糊,使用不同的“高斯核”可得到不同模糊程度的图像。一幅图像其高斯尺度空间可由其和不同的高斯卷积得到:L(x,y,σ)=G(x,y,σ)∗I(x,y)
G(x,y,σ)是高斯核函数,σ称为尺度空间因子,它是高斯正态分布的标准差,反映了图像被模糊的程度,其值越大图像越模糊,对应的尺度也就越大。L(x,y,σ)代表着图像的高斯尺度空间。

构建尺度空间的目的是为了检测出在不同的尺度下都存在的特征点,而检测特征点较好的算子是Δ^2G(高斯拉普拉斯,LoG)
使用LoG虽然能较好的检测到图像中的特征点,但是其运算量过大,通常可使用DoG(差分高斯,Difference of Gaussina)来近似计算LoG。

设k为相邻两个高斯尺度空间的比例因子,则DoG的定义:
D(x,y,σ)=[G(x,y,kσ)−G(x,y,σ)]∗I(x,y)=L(x,y,kσ)−L(x,y,σ)

从上式可以知道,将相邻的两个高斯空间的图像相减就得到了DoG的响应图像。为了得到DoG图像,先要构建高斯尺度空间,而高斯的尺度空间可以在图像金字塔降采样的基础上加上高斯滤波得到,也就是对图像金字塔的每层图像使用不同的参数σ进行高斯模糊,使每层金字塔有多张高斯模糊过的图像。
如下图,octave间是降采样关系,且octave(i+1)的第一张(从下往上数)图像是由octave(i)中德倒数第三张图像降采样得到。octave内的图像大小一样,只是高斯模糊使用的尺度参数不同。


高斯金字塔

对于一幅图像,建立其在不同尺度scale下的图像,也称为octave,这是为了scale-invariant,也就是在任何尺度都能有对应的特征点。下图中右侧的DoG就是我们构建的尺度空间。


DoG尺度空间
2.关键点搜索和定位
a.关键点搜索

为了寻找尺度空间的极值点,每一个采样点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。 一个点如果在DOG尺度空间本层以及上下两层的26个领域中是最大或最小值时,就认为该点是图像在该尺度下的一个特征点。下图中将叉号点要比较的26个点都标为了绿色。


关键点搜索
b.关键点定位

找到所有特征点后,要去除低对比度和不稳定的边缘效应的点,留下具有代表性的关键点(比如,正方形旋转后变为菱形,如果用边缘做识别,4条边就完全不一样,就会错误;如果用角点识别,则稳定一些)。去除这些点的好处是增强匹配的抗噪能力和稳定性。最后,对离散的点做曲线拟合,得到精确的关键点的位置和尺度信息。

3.方向赋值

为了实现旋转不变性,需要根据检测到的关键点的局部图像结构为特征点赋值。具体做法是用梯度方向直方图。在计算直方图时,每个加入直方图的采样点都使用圆形高斯函数进行加权处理,也就是进行高斯平滑。这主要是因为SIFT算法只考虑了尺度和旋转不变形,没有考虑仿射不变性。通过高斯平滑,可以使关键点附近的梯度幅值有较大权重,从而部分弥补没考虑仿射不变形产生的特征点不稳定。注意,一个关键点可能具有多个关键方向,这有利于增强图像匹配的鲁棒性。

4.关键点描述子的生成

关键点描述子不但包括关键点,还包括关键点周围对其有贡献的像素点。这样可使关键点有更多的不变特性,提高目标匹配效率。在描述子采样区域时,需要考虑旋转后进行双线性插值,防止因旋转图像出现白点。同时,为了保证旋转不变性,要以特征点为中心,在附近领域内旋转θ角,然后计算采样区域的梯度直方图,形成n维SIFT特征矢量(如128-SIFT)。最后,为了去除光照变化的影响,需要对特征矢量进行归一化处理。

SIFT特征提取优点
  1. SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。
  2. 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配。
  3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量。
  4. 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。
  5. 可扩展性,可以很方便的与其他形式的特征向量进行联合。
  6. 需要较少的先验知识,易于开发。

近来不断有人改进,其中最著名的有 SURF(计算量小,运算速度快,提取的特征点几乎与SIFT相同)和 CSIFT(彩色尺度特征不变变换,顾名思义,可以解决基于彩色图像的SIFT问题)。

SIFT特征提取缺点
  1. 实时性不高,因为要不断地要进行下采样和插值等操作;
  2. 有时特征点较少(比如模糊图像);
  3. 对边缘光滑的目标无法准确提取特征(比如边缘平滑的图像,检测出的特征点过少,对圆更是无能为力)。
Python-OpenCV实现:
import cv2 
def sift_kp(image):
    gray_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
    sift = cv2.xfeatures2d_SIFT.create()
    kp,des = sift.detectAndCompute(image, None)
    kp_image = cv2.drawKeypoints(image, kp, None)
    return kp_image,kp,des
image = cv2.imread('dog.jpg')
kp_image, _, des = sift_kp(image)
print(image.shape, des.shape)
cv2.namedWindow('dog',cv2.WINDOW_NORMAL)
cv2.imshow('dog', kp_image)
if cv2.waitKey(0) == 27:
    cv2.destroyAllWindows()
dog_sift

其中sift.detectAndCompute()函数返回kp,des。

kp存储着特征点的信息:
  • angle:角度,表示关键点的方向,通过Lowe大神的论文可以知道,为了保证方向不变形,SIFT算法通过对关键点周围邻域进行梯度运算,求得该点方向。-1为初值。
  • class_id:当要对图片进行分类时,我们可以用class_id对每个特征点进行区分,未设定时为-1,需要靠自己设定。
  • octave:代表是从金字塔哪一层提取的得到的数据。
  • pt:关键点点的坐标。
  • response:响应程度,代表该点强壮大小,更确切的说,是该点角点的程度。
  • size:该点直径的大小。
des为特征向量:

上图dog的shape为(481, 500, 3),提取的特征向量des的shape为(501, 128),501个128维的特征点。

cv2.drawKeyPoints(image, keypoints, outImage, color, flags)

该方法可以在特征点处绘制一个小圆圈。

  • image:输入图像,可以使三通道或单通道图像。
  • keypoints:特征点向量,向量内每一个元素是一个KeyPoint对象,包含了特征点的各种属性信息。
  • outImage:特征点绘制的画布图像,可以是原图像。
  • 绘制的特征点的颜色信息,默认绘制的是随机彩色。
  • flags:特征点的绘制模式,其实就是设置特征点的哪些信息需要绘制,哪些不需要绘制,有以下几种模式可选:
    cv2.DRAW_MATCHES_FLAGS_DEFAULT: 只绘制特征点的坐标点,显示在图像上就是一个个小圆点,每个小圆点的圆心坐标都是特征点的坐标。cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS:绘制特征点的时候绘制的是一个个带有方向的圆,这种方法同时显示图像的坐标,size和方向,是最能显示特征的一种绘制方式 。cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG:函数不创建输出的图像,而是直接在输出图像变量空间绘制,要求本身输出图像变量就是一个初始化好了的,size与type都是已经初始化好的变量。
    cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS: 单点的特征点不被绘制 。
参考

https://blog.csdn.net/happyer88/article/details/45817305
https://www.jianshu.com/p/d94e558ebe26
https://www.cnblogs.com/wangguchangqing/p/4853263.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342