语义分割训练精度计算

语义分割训练的output结果一般是[batch_size, num_classes, width, height]这样的形式,而label的结果一般是[batch_size, width, height],类似如下形状,outputs:[4,6,480,320],而真值label:[4,480,320]。由于维度不同,无法直接比较,所以这两者要比较就要采取一点方法。
output里面每个类型都有一个值,要取最大的值作为得到的类别结果,所以要用到torch.max()函数。

output = torch.max(input, dim)
# input是softmax函数输出的一个tensor
# dim是max函数索引的维度0/1,0是每列的最大值,1是每行的最大值

dim就是维度,我这里应该取1
该函数的输出是:
函数会返回两个tensor,第一个tensor是每行的最大值;第二个tensor是每行最大值的索引。
一般我们不需要tensor每行的最大值,而需要的是索引,也就是结果是哪一类。因为这里的num_classes维度为1,所以dim=1,也就是取出这个维度上的最大值。

torch.max(output, dim=1)

其次,我们需要比较output和label的值,那就是说对长*宽的所有像素,要比较类别,如果类别一致就加到正确结果中,用正确结果的数量去除以所有像素的总数量,就是精度。这里有两个问题需要解决:

  1. 计算两个tensor之间有多少值相等
    在PyTorch中,要计算两个tensor之间有多少值相等,你可以使用
    torch.eq()函数来生成一个布尔型tensor,其中每个元素表示对应位置的元素是否相等(相等为True,不相等为False)。
    然后,你可以使用torch.sum()函数来计算这个布尔型tensor中True的总数,即有多少值相等。但是,需要注意的是,
    torch.sum()默认计算的是所有元素的和,对于布尔型tensor,True会被当作1处理,False会被当作0处理。
    举例如下:
import torch  
  
# 定义两个tensor  
tensor1 = torch.tensor([1, 2, 3, 4, 5])  
tensor2 = torch.tensor([1, 3, 3, 4, 6])  
  
# 使用torch.eq()比较两个tensor  
equal_mask = torch.eq(tensor1, tensor2)  
  
# 计算相等的值的数量  
equal_count = torch.sum(equal_mask)  
  
print("相等的值的数量:", equal_count)

在这个例子中,tensor1和tensor2在位置0、2、3的值是相等的(即1,3和4),所以输出会是相等的值的数量: tensor(3, dtype=torch.int64),表示有3个值相等。
注意,torch.sum()的默认数据类型是torch.int64,但你可以通过指定dtype参数来改变结果的数据类型,例如torch.sum(equal_mask, dtype=torch.float32)。不过,在这个场景下,通常使用默认的torch.int64就足够了。

  1. 获取一个tensor的所有元素总数
    在PyTorch中,要获取一个tensor的元素个数(即tensor的总大小),你可以使用.numel()方法。这个方法会返回tensor中所有元素的数量,不论tensor的维度如何。
    下面是一个简单的例子:
import torch  
  
# 定义一个tensor  
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])  
  
# 获取tensor的元素个数  
num_elements = tensor.numel()  
  
print("Tensor的元素个数:", num_elements)

在这个例子中,tensor是一个2x3的二维tensor,包含6个元素。因此,输出将会是Tensor的元素个数: 6。
.numel()方法非常适合于快速计算tensor中元素的总数,无需手动计算各维度的乘积。这是处理不同形状和大小的tensor时的一个非常有用的功能。

综上所述,完整的计算模型训练精度的函数如下:

def get_acc(y_pred, y_true, num_classes):
    #print("y_pred.shape: ", y_pred.shape)
    #print("y_true.shape: ", y_true.shape)
    temp = torch.max(y_pred, dim=1)
    #print(temp[1])
    #print(temp[1].shape)
    # 比较y_true和temp[1]
    equal_mask = torch.eq(temp[1], y_true)
    equal_count = torch.sum(equal_mask)
    num_elements = y_true.numel()
    #print("equal_count: ", equal_count)
    #print("num_elements: ", num_elements)
    acc = equal_count/num_elements
    #print("acc: ", acc)
    return acc
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容