【Kafka小试】Kafka 高可用机制

Kafka不是完全同步,也不是完全异步,是一种特殊的ISR(In Sync Replica)。
ISR(in-sync replica) 就是 Kafka 为某个分区维护的一组同步集合,即每个分区都有自己的一个 ISR 集合,处于 ISR 集合中的副本,意味着 follower 副本与 leader 副本保持同步状态,只有处于 ISR 集合中的副本才有资格被选举为 leader。

Kafka的Replica

  1. kafka的topic可以设置有n个副本(replica),副本数最好要小于等于broker的数量,也就是要保证一个broker上的replica最多有一个。
  2. 创建副本的单位是topic的分区,每个分区有1个leader和0到n-1follower,Kafka把多个replica分为Lerder replica和follower replica。
  3. 当producer在向topic partition中写数据时,根据ack机制,默认ack=1,只会向leader中写入数据,然后leader中的数据会复制到其他的replica中,follower会周期性的从leader中pull数据,但是对于数据的读写操作都在leader replica中,follower副本只是当leader副本挂了后才重新选取leader,follower并不向外提供服务。

Kafka ISR机制

ISR副本: 就是能跟首领副本基本保持一致的跟随副本,如果同步的速度太慢的话,就会被踢出ISR副本。

副本同步:

  • LEO(last end offset):日志末端位移,记录了该副本对象底层日志文件中下一条消息的位移值,副本写入消息的时候,会自动更新 LEO 值。如果LE0 为2的时候,当前的offset为1。

  • HW(high watermark):高水印值,HW 一定不会大于 LEO 值,小于 HW 值的消息被认为是“已提交”或“已备份”的消息,并对消费者可见。

  • producer向leader发送消息,之后写入到leader,leader在本地生成log,之后follow从leader拉取消息,follow写入到本地的log中,会给leader返回一个ack信号,一旦收到了ISR中的所有的ack信号,就会增加HW,然后leader返回给producer一个ack。

Kafka的复制机制

kafka 每个分区都是由顺序追加的不可变的消息序列组成,每条消息都一个唯一的offset 来标记位置。

kafka中的副本机制是以分区粒度进行复制的,在kafka中创建 topic的时候,都可以设置一个复制因子(replica count),这个复制因子决定着分区副本的个数,如果leader 挂掉了,kafka 会把分区主节点failover到其他副本节点,这样就能保证这个分区的消息是可用的。leader节点负责接收producer 发过来的消息,其他副本节点(follower)从主节点上拷贝消息。

[站外图片上传中...(image-31f1f9-1614765714779)]

kakfa 日志复制算法提供的保证是当一条消息在producer端认为已经committed的之后,如果leader 节点挂掉了,其他节点被选举成为了 leader 节点后,这条消息同样是可以被消费到的。

关键配置: unclean.leader.election.enable

Indicates whether to enable replicas not in the ISR set to be elected as leader as a last resort, even though doing so may result in data loss

Type:   boolean
Default:    false
Valid Values:   
Importance: high
Update Mode:    cluster-wide

默认为 false, 即允许不在isr中replica选为leader,这个配置可以全局配置,也可以在topic级别配置。

这样的话,leader选举的时候,只能从ISR集合中选举,集合中的每个点都必须是和leader消息同步的,也就是没有延迟,分区的leader 维护ISR 集合列表,如果某个点落后太多,就从 ISR集合中踢出去。

producer 发送一条消息到leader节点后, 只有当ISR中所有Replica都向leader发送ACK确认这条消息时,leader才commit,这时候producer才能认为这条消息commit了,正是因为如此,kafka客户端的写性能取决于ISR集合中的最慢的一个broker的接收消息的性能,如果一个点性能太差,就必须尽快的识别出来,然后从ISR集合中踢出去,以免造成性能问题。

如何判断副本不会被移除ISR集合?

replica.lag.max.messages: follower副本最大落后leader副本的消息数。(0.9.0.0版本后移除)。

replica.lag.time.max.ms: 不仅指自从上次从副本获取请求以来经过的时间,而且还指自上次捕获副本以来的时间。

设置replica.lag.max.messages为3,只要 follower 只要不落后leader 大于2条消息,就然后是跟得上leader的节点,就不会被踢出去。

设置 replica.lag.time.max.ms 为 300ms, 意味着只要 follower 在每 300ms内发送fetch请求,就不会被认为已经dead ,不会从ISR集合中踢出去。

结语

Replica的目的就是在发生意外时及时顶上,leader失效后,就需要从follower中马上选一个新的leader 。选举时优先从ISR中选定,因为这个列表中follower的数据是与leader同步的,从他们中间选取可以保证数据完整 。

但如果不幸ISR列表中的follower都不行了,就只能从其他follower中选取,这时就有数据丢失的可能了,因为不确定这个follower是否已经把leader的数据都复制完成了。

还有一种极端情况,就是所有副本都失效了,这时有两种方案:

  • 等待ISR中的一个活过来,选为Leader,数据可靠,但活过来的时间不确定 。

  • 选择第一个活过来的Replication,不一定是ISR中的,选为leader,以最快速度恢复可用性,但数据不一定完整。

Kafka支持通过配置选择使用哪一种方案,可以根据可用性和一致性进行权衡。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容