Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,
A solution set is:
[
[7],
[2, 2, 3]
]
Solution1:Backtracking(DFS)
总结见:http://www.jianshu.com/p/883fdda93a66
思路:回溯法,类似深度优先进行组合,cur_result数组保持用当前尝试的结果,并按照深度优先次序依次将组合结果加入到result_list中,因为可以重复选择,start_next 仍= i, DFS到底后 step back (通过remove 当前cur_result的最后一位),换下一个尝试组合,后继续DFS重复此过程,实现上采用递归方式。
排序后可以部分剪枝,提前返回结果 加速。
回溯顺序:
输入[1, 2, 3]
[1, 1, 1] [1, 1, 2] [1, 1, 3] [1, 2, 2] [1, 2, 3] [1, 3, 3]
[2, 2, 2] [2, 2, 3] ...
Time Complexity: O((target_test_time) ^ N) since there could be a 重复情况
Space Complexity(不算result的话): O(2n) : n是递归缓存的cur_result + n是缓存了n层的普通变量O(1) ? (Not Sure)
Solution1 Code:
class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> result = new ArrayList<>();
List<Integer> cur_res = new ArrayList<>();
Arrays.sort(candidates); //for possible early stop
backtrack(candidates, 0, target, cur_res, result);
return result;
}
private void backtrack(int[] nums, int start, int remain, List<Integer> cur_res, List<List<Integer>> result) {
if(remain < 0) // early stop
return;
else if(remain == 0)
result.add(new ArrayList<>(cur_res));
else {
for(int i = start; i < nums.length; i++) {
cur_res.add(nums[i]);
backtrack(nums, i, remain - nums[i], cur_res, result);
cur_res.remove(cur_res.size() - 1);
}
}
}
}
Solution1.Round1 Code:
class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> result = new ArrayList<>();
if(candidates == null || candidates.length == 0) {
return result;
}
List<Integer> cur_res = new ArrayList<>();
// Arrays.sort(candidates);
backtrack(candidates, 0, 0, cur_res, result, target);
return result;
}
private void backtrack(int[] candidates, int start, int cur_sum, List<Integer> cur_res, List<List<Integer>> result, int target) {
if(cur_sum == target) {
result.add(new ArrayList<>(cur_res));
return;
}
else if(cur_sum > target) {
return;
}
for(int i = start; i < candidates.length; i++) {
cur_res.add(candidates[i]);
backtrack(candidates, i, cur_sum + candidates[i], cur_res, result, target);
cur_res.remove(cur_res.size() - 1);
}
}
}