Python 使用sklearn计算余弦相似度

背景

在计算相似度时,常常用到余弦夹角来判断相似度,Cosine(余弦相似度)取值范围[-1,1],当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1,两个方向正交时夹角余弦取值为0。
cos(x_1,x_2)=\frac{x_1·x_2}{|x_1||x_2|}
在实际业务中运用的地方还是挺多的,比如:可以根据历史异常行为的用户,找出现在有异常行为的其他用户;在文本分析领域,可以根据一些文章,找出一些相似文章(把文章转换为向量)。

计算相似度的方法除了余弦夹角,还可以利用距离来判断相似,距离越近越相似,这里不做详细展开。

自定义函数法

import numpy as np
def cosine_similarity(x,y):
    num = x.dot(y.T)
    denom = np.linalg.norm(x) * np.linalg.norm(y)
    return num / denom

输入两个np.array向量,计算余弦函数的值

cosine_similarity(np.array([0,1,2,3,4]),np.array([5,6,7,8,9]))
#0.9146591207600472

cosine_similarity(np.array([1,1]),np.array([2,2]))
#0.9999999999999998

cosine_similarity(np.array([0,1]),np.array([1,0]))
#0.0

基于sklearn

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

a1=np.arange(15).reshape(3,5)
a2=np.arange(20).reshape(4,5)

cosine_similarity(a1,a2)   #第一行的值是a1中的第一个行向量与a2中所有的行向量之间的余弦相似度

cosine_similarity(a1)   #a1中的行向量之间的两两余弦相似度

cosine_similarity(X, Y=None, dense_output=True)
X : ndarray or sparse array, shape: (n_samples_X, n_features)
Input data.---------------X是二维的矩阵
Y : ndarray or sparse array, shape: (n_samples_Y, n_features)
Input data. If None, the output will be the pairwise
similarities between all samples in X.---------------Y也是二维的矩阵

sklearn余弦相似度

历史相关文章


以上是自己实践中遇到的一些问题,分享出来供大家参考学习,欢迎关注微信公众号DataShare,不定期分享干货

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342