感知机(Perceptron)学习法

Algorithm

model: f(x) = sign(w*x + b)
input: training_set = {(x1, y1), (x2, y2), ..., (xn, yn)}
xi∈Rn, yi ∈{-1, +1}, i=1,2,...,n;
learning rate: 0 < η ≤ 1;
output: w, b

  1. initialize w and b;
  2. select one (x, y) in the training set
  3. if y * (w*x +b) ≤ 0
    w ← w + η * yi * xi
    b ← b + η * yi
  4. Go to step 2 until there is no more mistakes in the training set

Code

Note:

  • use python 3.x
  • pip install matplotlib
import copy
from matplotlib import pyplot as plt
from matplotlib import animation


def update(x, y, w, b, rate):
    for i in range(len(w)):
        w[i] += rate * y * x[i]
    b += rate * y
    return w, b


def compute(x, y, w, b):
    wx = 0
    for i in range(len(w)):
        wx += w[i] * x[i]
    return y * (wx + b)


def learning(training_set, w, b, rate):
    flag = True
    for item in training_set:
        x = item[0]
        y = item[1]
        if compute(x, y, w, b) <= 0:
            flag = False
            w, b = update(x, y, w, b, rate)
    return flag, w, b


def train(training_set, w, b):
    training_process = []
    learning_rate = 1
    iterations = 1000
    for index in range(iterations):
        completed, w, b = learning(training_set, w, b, learning_rate)
        training_process.append([copy.copy(w), b])
        if completed > 0:
            print("RESULT: w:", w, "b:", b)
            return training_process


def display(training_set, training_process):
    def init():
        line.set_data([], [])
        x, y, x_, y_ = [], [], [], []
        for p in training_set:
            if p[1] > 0:
                x.append(p[0][0])
                y.append(p[0][1])
            else:
                x_.append(p[0][0])
                y_.append(p[0][1])

        plt.plot(x, y, 'bo', x_, y_, 'rx')
        plt.axis([-6, 6, -6, 6])
        plt.grid(True)
        plt.xlabel('x(1)')
        plt.ylabel('x(2)')
        plt.title('Perceptron')
        return line, label

    def frame_update(frame_index):
        w = training_process[frame_index][0]
        b = training_process[frame_index][1]
        if w[1] == 0:
            return line, label
        x1 = -7
        y1 = -(b + w[0] * x1) / w[1]
        x2 = 7
        y2 = -(b + w[0] * x2) / w[1]
        line.set_data([x1, x2], [y1, y2])
        x1 = 0
        y1 = -(b + w[0] * x1) / w[1]
        label.set_text(training_process[frame_index])
        label.set_position([x1, y1])
        return line, label

    fig = plt.figure()
    ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))
    line, = ax.plot([], [], 'g', lw=2)
    label = ax.text([], [], '')

    anim = animation.FuncAnimation(fig, frame_update, init_func=init,
                                   frames=len(training_process), interval=1000,
                                   repeat=False,
                                   blit=True)
    plt.show()


def main():
    training_set = [[(3, 3), 1], [(4, 3), 1], [(1, 1), -1]]
    w = [0, 0]
    b = 0
    training_process = train(training_set, w, b)
    print(training_process)
    display(training_set, training_process)


if __name__ == "__main__":
    main()

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容