机器学习线性回归

一、基本原理

线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。

  • 线性:两个变量之间的关系一次函数关系的——图象是直线,叫做线性。
  • 非线性:两个变量之间的关系不是一次函数关系的——图象不是直线,叫做非线性。
  • 回归:人们在测量事物的时候因为客观条件所限,求得的都是测量值,而不是事物真实的值,为了能够得到真实值,无限次的进行测量,最后通过这些测量数据计算回归到真实值,这就是回归的由来。

线性回归就是利用的样本D=(\mathrm{x}_i, \mathrm{y}_i)\mathrm{i}=1,2,3 \ldots \mathrm{N}, \mathrm{x}_i是特征数据,可能是一个,也可能是多个,通过有监督的学习,学习到由xy的映射h,利用该映射关系对未知的数据进行预估,因为y为连续值,所以是回归问题。

  1. 假设函数的形式
    线性回归的假设函数(\theta_{0}表示截距项,x_{0} = 1,方便矩阵表达):
    f(x)=\theta_{0} x_{0}+\theta_{1} x_{1}+\theta_{2} x_{2} \ldots+\theta_{n} x_{n} = \theta ^TX
    其中\theta,X都是列向量

  2. loss function
    一般使用最小二乘法,真实值y_{i},预测值h_θ(x),则误差平方为\left(y_{i}-h_{\theta}\left(x_{i}\right)\right)^{2}找到合适的参数,使得误差平方和最小
    MSE: J\left(\theta_{0}, \theta_{1}\right)=\frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-h_{\theta}\left(x_{i}\right)\right)^{2}

其中共有m个样本点,乘以1/2是为了方便计算。

二、面试题

  1. 简述岭回归与Lasso回归以及使用场景。
  • 目的:

    • 解决线性回归出现的过拟合的请况。
    • 解决在通过正规方程方法求解\theta的过程中出现的X^TX不可逆的请况。
  • 本质:

    • 约束(限制)要优化的参数
      这两种回归均通过在损失函数中引入正则化项来达到目的:
      线性回归的损失函数:
      J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
  • 岭回归
    如果数据的特征比样本点还多,数据特征n,样本个数m,如果n>m,则计算(XTX)-1时会出错。因为(xTX)不是满秩矩阵,所以不可逆。
    为了解决这个问题,统计学家引入了岭回归的概念。
    w = (XTX +入I)-1xTy
    入为岭系数,I为单位矩阵(对角线上全为1,其他元素全为O)

    • 损失函数:
      J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\lambda \sum_{j=1}^{n} \theta_{j}^{2}
      加入了一个L2的正则
  • Lasso回归

    • 损失函数
      J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\lambda \sum_{j=1}^{n} |\theta_{j}|
  • 补充

    • ElasticNet 回归: 线性回归 + L1正则化 + L2 正则化。

      • ElasticNet在我们发现用Lasso回归太过(太多特征被稀疏为0),而岭回归也正则化的不够(回归系数衰减太慢)的时候,可以考虑使用ElasticNet回归来综合,得到比较好的结果。

      • 损失函数
        J(\theta)=\frac{1}{2} \sum_{i}^{m}\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}+\lambda\left(\rho \sum_{j}^{n}\left|\theta_{j}\right|+(1-\rho) \sum_{j}^{n} \theta_{j}^{2}\right)

    • LWR( 局部加权)回归

      • 局部加权线性回归是在线性回归的基础上对每一个测试样本(训练的时候就是每一个训练样本)在其已有的样本进行一个加权拟合,权重的确定可以通过一个核来计算,常用的有高斯核(离测试样本越近,权重越大,反之越小),这样对每一个测试样本就得到了不一样的权重向量,所以最后得出的拟合曲线不再是线性的了,这样就增加的模型的复杂度来更好的拟合非线性数据。

      • 损失函数
        J(\theta)=\frac{1}{2} \sum_{i=1}^{m} w^{(i)}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}

  1. 线性回归要求因变量服从正态分布吗?

线性回归的假设前提是噪声服从正态分布,即因变量服从正态分布。但实际上难以达到,因变量服从正态分布时模型拟合效果更好。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容