使用warpaffine对图片做常见处理

使用warpaffine处理图片

在目标检测和后续图像处理的流程中,warpAffine 是 OpenCV 提供的强大工具,常用于仿射变换操作。对于 YOLO 等目标检测模型,warpAffine 不仅适合于实现图片的 Letterbox(加黑边缩放) 操作,也可以用于在识别目标后,裁剪出检测区域并进行规范化变换、旋转等操作。

通过调整仿射变换矩阵,我们可以在统一的 API 下完成多个常见的图像处理需求。这种方式特别适合于与 CUDA 加速实现的 Letterbox 代码无缝结合,从而实现不同的功能。

仿射变换矩阵设置

裁剪出来后resize

  1. 先将图片的裁剪位置的起点移动到图片的(0,0)点。对应的仿射变换矩阵为M_1 = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix},其中dx = -x_{start} , dy = -y_{start}

  2. 对图片做scale变换。对应的仿射变换矩阵为
    M_2 = \begin{bmatrix} scale1 & 0 & 0 \\ 0 & scale2 & 0 \\ 0 & 0 & 1 \end{bmatrix},其中scale1 = \frac{dstw} {x_{end} - x_{start}}scale2 = \frac{dsth} {y_{end} - y_{start}} ,dsth和dstw为目标图片的大小

  3. 最终的仿射变换矩阵为
    M = M_2 * M_1= \begin{bmatrix} scale1 & 0 & dx \\ 0 & scale2 & dy \\ 0 & 0 & 1 \end{bmatrix}

直接裁剪

  1. 先将图片的裁剪位置的起点移动到图片的(0,0)点。对应的仿射变换矩阵为
    M = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix},其中dx = -x_{start} , dy = -y_{start}

  2. 设置目标图片大小的宽高为框的宽高。M就是最终的仿射变换矩阵。

旋转

旋转的一般仿射变换矩阵

\begin{bmatrix} x \\ y\\ 1 \end{bmatrix} => \begin{bmatrix} X \\ Y\\ 1 \end{bmatrix}

x = r*cos(\theta), y=r*sin(\theta)

X = r*cos(\theta+\alpha) = r*cos(\theta)*cos(\alpha) - r*sin(\theta)*sin(\alpha) = x*cos(\alpha) - y*sin(\alpha)

Y = r*sin(\theta+\alpha) = r*sin(\theta)*cos(\alpha) + r*cos(\theta)*sin(\alpha) = y*cos(\alpha) + x*sin(\alpha)

\begin{bmatrix} cos(\alpha) &-sin(\alpha) & 0 \\ sin(\alpha) &cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} X\\ Y\\ 1 \end{bmatrix}

任意原点顺时针旋转仿射变换矩阵计算
  1. 中心点平移到原点
    设原图的中心点为 (c_x, c_y),其中:c_x = \frac{w}{2}, \quad c_y = \frac{h}{2}
    对应的仿射变换矩阵为:
    M_1 = \begin{bmatrix} 1 & 0 & -c_x \\ 0 & 1 & -c_y \\ 0 & 0 & 1 \end{bmatrix}

  1. 旋转
    顺时针旋转 theta 角度,相当于逆时针旋转 -theta
    对应的仿射变换矩阵为:
    M_2 = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}

  1. 旋转后向图片中心移动
    图片旋转后,宽高会变化,新宽度 w' 和高度 h' 为:
    w' = |w \cdot \cos\theta| + |h \cdot \sin\theta|, \quad h' = |w \cdot \sin\theta| + |h \cdot \cos\theta|
    旋转后图片的新中心点为(c_x', c_y'),其中:c_x' = \frac{w'}{2}, \quad c_y' = \frac{h'}{2}
    对应的仿射变换矩阵为:
    M_3 = \begin{bmatrix} 1 & 0 & c_x' \\ 0 & 1 & c_y' \\ 0 & 0 & 1 \end{bmatrix}

  1. 最终变换矩阵计算
    综合变换矩阵为:
    M = M_3 \cdot M_2 \cdot M_1
    展开为:
    M = \begin{bmatrix} \cos\theta & \sin\theta & -c_x\cos\theta - c_y\sin\theta + c_x' \\ -\sin\theta & \cos\theta & c_x\sin\theta - c_y\cos\theta + c_y' \\ 0 & 0 & 1 \end{bmatrix}

python 程序

对程序做了二次封装

现在支持

  1. letter_box

  2. 裁剪图片

  3. 裁剪后resize图片到指定大小

  4. 裁剪后 按照短边resize图片,保持宽高比

  5. resize图片到指定大小

  6. 按照短边resize图片,保持宽高比

  7. 对图片做镜像出来,水平、垂直镜像

  8. 对图片做任意角度顺时针旋转,不丢失部分画面

  9. 归一化

import cv2
import numpy as np
from enum import Enum
from typing import List, Tuple, Union
from pydantic import BaseModel, field_validator

class NormType(Enum):
    NoneType = 0  
    MeanStd = 1
    AlphaBeta = 2

class ChannelType(Enum):
    NoneType = 0
    SwapRB = 1

class Norm(BaseModel):
    mean: List[float] = [0.0, 0.0, 0.0]
    std: List[float] = [1.0, 1.0, 1.0]
    alpha: float = 1 / 255.0
    beta: float = 0.0
    norm_type: NormType = NormType.NoneType
    channel_type: ChannelType = ChannelType.NoneType

    @field_validator("mean", "std", mode="before")
    @classmethod
    def validate_length(cls, value, field):
        """Ensure mean and std have exactly 3 elements."""
        if len(value) != 3:
            raise ValueError(f"{field.alias} must have exactly 3 elements.")
        return value

    @staticmethod
    def mean_std(mean: List[float], std: List[float], channel_type: ChannelType = ChannelType.NoneType) -> "Norm":
        return Norm(mean=mean, std=std, norm_type=NormType.MeanStd, channel_type=channel_type)

    @staticmethod
    def alpha_beta(alpha: float, beta: float, channel_type: ChannelType = ChannelType.NoneType) -> "Norm":
        return Norm(alpha=alpha, beta=beta, norm_type=NormType.AlphaBeta, channel_type=channel_type)

    @staticmethod
    def none() -> "Norm":
        return Norm()

    def __repr__(self):
        return (
            f"Norm(mean={self.mean}, std={self.std}, alpha={self.alpha}, beta={self.beta}, "
            f"norm_type={self.norm_type}, channel_type={self.channel_type})"
        )

class WarpaffineMatrix:
    def __init__(self, matrix: np.ndarray, target: Tuple[int, int]) -> None:
        self.matrix = matrix
        self.target = target

    def __repr__(self):
        return (
            f"WarpaffineMatrix(matrix={self.matrix}, target={self.target})"
        )

    def invert(self) -> np.ndarray:
        """Get the inverse of the affine transformation matrix."""
        return np.linalg.inv(np.vstack([self.matrix, [0, 0, 1]]))[:2]

    @staticmethod
    def letter_box_matrix(src: Tuple[int, int], target: Tuple[int, int]) -> "WarpaffineMatrix":
        scale = min(target[0] / src[0], target[1] / src[1])
        offset_x = (target[0] - scale * src[0]) * 0.5
        offset_y = (target[1] - scale * src[1]) * 0.5
        matrix = np.array([
            [scale, 0, offset_x],
            [0, scale, offset_y]
        ], dtype=np.float32)
        return WarpaffineMatrix(matrix=matrix, target=target)

    @staticmethod
    def resize_matrix(src: Tuple[int, int], target: Union[Tuple[int, int], int]) -> "WarpaffineMatrix":
        if isinstance(target, tuple):
            scale_x = target[0] / src[0]
            scale_y = target[1] / src[1]
            matrix = np.array([
                [scale_x, 0, 0],
                [0, scale_y, 0]
            ], dtype=np.float32)
            new_target = target
        elif isinstance(target, int):
            scale = target / min(src)
            new_width = int(src[0] * scale)
            new_height = int(src[1] * scale)
            matrix = np.array([
                [scale, 0, 0],
                [0, scale, 0]
            ], dtype=np.float32)
            new_target = (new_width, new_height)
        else:
            raise ValueError("Target must be either a tuple (width, height) or an integer for the shorter edge.")

        return WarpaffineMatrix(matrix=matrix, target=new_target)

    @staticmethod
    def crop_resize_matrix(
        start_point: Tuple[int, int],
        end_point: Tuple[int, int],
        target: Union[Tuple[int, int], int, None] = None
    ) -> "WarpaffineMatrix":
        """
        生成裁剪后并resize的仿射变换矩阵

        参数:
            start_point (Tuple[int, int]): Top-left (x, y).
            end_point (Tuple[int, int]): Bottom-right (x, y).
            target (Union[Tuple[int, int], int, None]): 
                If tuple, 使用原始的resize方法.
                If int, 使用短边resize方法,保持长宽比.
                If None, 相当于只截取

        Returns:
            WarpaffineMatrix: Affine transformation matrix and target dimensions.
        """
        crop_width = end_point[0] - start_point[0]
        crop_height = end_point[1] - start_point[1]

        if target is None:
            target_width, target_height = crop_width, crop_height
        elif isinstance(target, tuple):
            target_width, target_height = target
        elif isinstance(target, int):
            scale = target / min(crop_width, crop_height)
            target_width = int(crop_width * scale)
            target_height = int(crop_height * scale)
        else:
            raise ValueError("Target must be a tuple (width, height), an integer, or None.")

        scale_x = target_width / crop_width
        scale_y = target_height / crop_height

        matrix = np.array([
            [scale_x, 0, -start_point[0] * scale_x],
            [0, scale_y, -start_point[1] * scale_y]
        ], dtype=np.float32)

        return WarpaffineMatrix(matrix=matrix, target=(target_width, target_height))

    @staticmethod
    def flip_matrix(horizontal: bool, vertical: bool, src: Tuple[int, int]) -> "WarpaffineMatrix":
        """
        获取镜像变换矩阵 水平镜像、垂直镜像
        """
        scale_x = -1 if horizontal else 1
        scale_y = -1 if vertical else 1
        translate_x = src[0] if horizontal else 0
        translate_y = src[1] if vertical else 0
        matrix = np.array([[scale_x, 0, translate_x], [0, scale_y, translate_y]], dtype=np.float32)
        return WarpaffineMatrix(matrix=matrix, target=src)

    @staticmethod
    def rotate_matrix(src: Tuple[int, int], angle: float) -> "WarpaffineMatrix":
        """
        获取顺时针旋转任意角度的仿射变换矩阵, 图片不丢失信息

        参数:
        - src: 原始图片的宽高 (width, height)
        - angle: 旋转角度(顺时针为正,单位为度)

        返回:
        - WarpaffineMatrix: 包含旋转变换矩阵的对象
        """
        # 转换角度为弧度
        theta = np.deg2rad(angle)
        # 计算旋转矩阵的元素
        cos_theta = np.cos(theta)
        sin_theta = np.sin(theta)

        width, height = src
        center_x, center_y = width / 2, height / 2

        new_width = int(abs(width * cos_theta) + abs(height * sin_theta))
        new_height = int(abs(width * sin_theta) + abs(height * cos_theta))

        new_center_x, new_center_y = new_width / 2, new_height / 2

        i2d0 = cos_theta
        i2d1 = sin_theta
        i2d2 = - cos_theta * center_x - sin_theta * center_y + new_center_x
        i2d3 = -sin_theta
        i2d4 = cos_theta
        i2d5 = sin_theta * center_x - cos_theta * center_y + new_center_y

        # 构建仿射矩阵
        matrix = np.array([[i2d0, i2d1, i2d2], [i2d3, i2d4, i2d5]], dtype=np.float32)
        return WarpaffineMatrix(matrix=matrix, target=(new_width, new_height))

class ImageTransformer:
    @staticmethod
    def normilization(image: np.ndarray, norm: Norm) -> np.ndarray:
        image = image.astype(np.float32)
        if norm.channel_type == ChannelType.SwapRB:
            image = image[..., ::-1]  # Swap RGB to BGR or vice versa

        mean = np.array(norm.mean, dtype=np.float32)
        std = np.array(norm.std, dtype=np.float32)

        if norm.norm_type == NormType.MeanStd:
            image = (image * norm.alpha - mean) / std
        elif norm.norm_type == NormType.AlphaBeta:
            image = image * norm.alpha + norm.beta

        return image

    @staticmethod
    def transform(
        image: np.ndarray, 
        warpaffine_matrix: WarpaffineMatrix, 
        border_value: Tuple[int, int, int] = (114, 114, 114)
    ) -> np.ndarray:
        if image is None or warpaffine_matrix is None:
            raise ValueError("Input image and warpaffine_matrix cannot be None.")

        transformed_image = cv2.warpAffine(
            image,
            warpaffine_matrix.matrix,
            warpaffine_matrix.target,
            flags=cv2.INTER_LINEAR,
            borderMode=cv2.BORDER_CONSTANT,
            borderValue=border_value
        )
        return transformed_image

if __name__ == "__main__":
    image_path = "test.jpg"

    image = cv2.imread(image_path)
    h, w, _ = image.shape
    letter_box_matrix = WarpaffineMatrix.letter_box_matrix((w, h), (640, 640))
    letter_box_image  = ImageTransformer.transform(image, letter_box_matrix)
    cv2.imwrite("letter_box_image.jpg", letter_box_image)

    resize_matrix = WarpaffineMatrix.resize_matrix((w, h), (640, 640))
    resize_image  = ImageTransformer.transform(image, resize_matrix)
    cv2.imwrite("resize_image.jpg", resize_image)

    crop_matrix = WarpaffineMatrix.crop_resize_matrix((561, 397), (687, 530))
    crop_image  = ImageTransformer.transform(image, crop_matrix)
    cv2.imwrite("crop_image.jpg", crop_image)

    crop_resize_matrix = WarpaffineMatrix.crop_resize_matrix((561, 397), (687, 530), (224, 224))
    crop_resize_image  = ImageTransformer.transform(image, crop_resize_matrix)
    cv2.imwrite("crop_resize_image.jpg", crop_resize_image)

    crop_resize_short_matrix = WarpaffineMatrix.crop_resize_matrix((561, 397), (687, 530), 224)
    crop_resize_short_image  = ImageTransformer.transform(image, crop_resize_short_matrix)
    cv2.imwrite("crop_resize_short_image.jpg", crop_resize_short_image)

    # flip_matrix
    flip_matrix = WarpaffineMatrix.flip_matrix(False, True, (w, h))
    flip_image  = ImageTransformer.transform(image, flip_matrix)
    cv2.imwrite("flip_image_v.jpg", flip_image)

    flip_matrix = WarpaffineMatrix.flip_matrix(True, False, (w, h))
    flip_image  = ImageTransformer.transform(image, flip_matrix)
    cv2.imwrite("flip_image_h.jpg", flip_image)

    flip_matrix = WarpaffineMatrix.flip_matrix(True, True, (w, h))
    flip_image  = ImageTransformer.transform(image, flip_matrix)
    cv2.imwrite("flip_image_hv.jpg", flip_image)

    rotate_matrix = WarpaffineMatrix.rotate_matrix((w, h), 30)
    rotate_image  = ImageTransformer.transform(image, rotate_matrix)
    cv2.imwrite("rotate_image_30.jpg", rotate_image)

cuda 程序

  • 仿射变换矩阵 Resize
struct ResizeMatrix 
{
    float i2d[6];  // image to dst(network), 2x3 matrix
    float d2i[6];  // dst to image, 2x3 matrix

    void compute(const std::tuple<int, int> &from, const std::tuple<int, int> &to) 
    {
        float scale_x = std::get<0>(to) / (float)std::get<0>(from);
        float scale_y = std::get<1>(to) / (float)std::get<1>(from);
        float scale = std::min(scale_x, scale_y);

        // resize 
        i2d[0] = scale;
        i2d[1] = 0;
        i2d[2] = 0;
        i2d[3] = 0;
        i2d[4] = scale;
        i2d[5] = 0;

        double D = i2d[0] * i2d[4] - i2d[1] * i2d[3];
        D = D != 0\. ? double(1.) / D : double(0.);
        double A11 = i2d[4] * D, A22 = i2d[0] * D, A12 = -i2d[1] * D, A21 = -i2d[3] * D;
        double b1 = -A11 * i2d[2] - A12 * i2d[5];
        double b2 = -A21 * i2d[2] - A22 * i2d[5];

        d2i[0] = A11;
        d2i[1] = A12;
        d2i[2] = b1;
        d2i[3] = A21;
        d2i[4] = A22;
        d2i[5] = b2;
    }
};
  • 仿射变换矩阵 裁剪后crop
struct ResizeCropMatrix 
{
    float i2d[6];  // image to dst(network), 2x3 matrix
    float d2i[6];  // dst to image, 2x3 matrix

    // 1 0 -x     sx 0  -x*sx
    // 0 1 -y  -> 0  sy -y*sy
    // 0 0 1      0  0  1
    void compute(const std::tuple<int, int> &to, 
                const std::tuple<int, int> &start, const std::tuple<int, int> &end) 
    {
        int start_x = std::get<0>(start);
        int start_y = std::get<1>(start);

        int end_x = std::get<0>(end);
        int end_y = std::get<1>(end);

        int dst_w = std::get<0>(to);
        int dst_h = std::get<1>(to);

        float scale_x = 1.0f * (end_x - start_x) / dst_w;
        float scale_y = 1.0f * (end_y - start_y) / dst_h;

        i2d[0] = scale_x;
        i2d[1] = 0;
        i2d[2] = -start_x * scale_x;
        i2d[3] = 0;
        i2d[4] = scale_y;
        i2d[5] = -start_y * scale_y;

        double D = i2d[0] * i2d[4] - i2d[1] * i2d[3];
        D = D != 0\. ? double(1.) / D : double(0.);
        double A11 = i2d[4] * D, A22 = i2d[0] * D, A12 = -i2d[1] * D, A21 = -i2d[3] * D;
        double b1 = -A11 * i2d[2] - A12 * i2d[5];
        double b2 = -A21 * i2d[2] - A22 * i2d[5];

        d2i[0] = A11;
        d2i[1] = A12;
        d2i[2] = b1;
        d2i[3] = A21;
        d2i[4] = A22;
        d2i[5] = b2;
    }
};
  • 仿射变换矩阵 letter box
struct AffineMatrix 
{
    float i2d[6];  // image to dst(network), 2x3 matrix
    float d2i[6];  // dst to image, 2x3 matrix

    void compute(const std::tuple<int, int> &from, const std::tuple<int, int> &to) 
    {
        float scale_x = std::get<0>(to) / (float)std::get<0>(from);
        float scale_y = std::get<1>(to) / (float)std::get<1>(from);
        float scale = std::min(scale_x, scale_y);

        // letter box
        i2d[0] = scale;
        i2d[1] = 0;
        i2d[2] = -scale * std::get<0>(from) * 0.5 + std::get<0>(to) * 0.5 + scale * 0.5 - 0.5;
        i2d[3] = 0;
        i2d[4] = scale;
        i2d[5] = -scale * std::get<1>(from) * 0.5 + std::get<1>(to) * 0.5 + scale * 0.5 - 0.5;

        double D = i2d[0] * i2d[4] - i2d[1] * i2d[3];
        D = D != 0\. ? double(1.) / D : double(0.);
        double A11 = i2d[4] * D, A22 = i2d[0] * D, A12 = -i2d[1] * D, A21 = -i2d[3] * D;
        double b1 = -A11 * i2d[2] - A12 * i2d[5];
        double b2 = -A21 * i2d[2] - A22 * i2d[5];

        d2i[0] = A11;
        d2i[1] = A12;
        d2i[2] = b1;
        d2i[3] = A21;
        d2i[4] = A22;
        d2i[5] = b2;
    }
};
  • 根据仿射变换矩阵变换图片的cuda程序
static __global__ void warp_affine_bilinear_and_normalize_plane_kernel(
    uint8_t *src, int src_line_size, int src_width, int src_height, float *dst, int dst_width,
    int dst_height, uint8_t const_value_st, float *warp_affine_matrix_2_3) 
{
    int dx = blockDim.x * blockIdx.x + threadIdx.x;
    int dy = blockDim.y * blockIdx.y + threadIdx.y;
    if (dx >= dst_width || dy >= dst_height) return;

    float m_x1 = warp_affine_matrix_2_3[0];
    float m_y1 = warp_affine_matrix_2_3[1];
    float m_z1 = warp_affine_matrix_2_3[2];
    float m_x2 = warp_affine_matrix_2_3[3];
    float m_y2 = warp_affine_matrix_2_3[4];
    float m_z2 = warp_affine_matrix_2_3[5];

    float src_x = m_x1 * dx + m_y1 * dy + m_z1;
    float src_y = m_x2 * dx + m_y2 * dy + m_z2;
    float c0, c1, c2;

    if (src_x <= -1 || src_x >= src_width || src_y <= -1 || src_y >= src_height) 
    {
        // out of range
        c0 = const_value_st;
        c1 = const_value_st;
        c2 = const_value_st;
    } 
    else 
    {
        int y_low = floorf(src_y);
        int x_low = floorf(src_x);
        int y_high = y_low + 1;
        int x_high = x_low + 1;

        uint8_t const_value[] = {const_value_st, const_value_st, const_value_st};
        float ly = src_y - y_low;
        float lx = src_x - x_low;
        float hy = 1 - ly;
        float hx = 1 - lx;
        float w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
        uint8_t *v1 = const_value;
        uint8_t *v2 = const_value;
        uint8_t *v3 = const_value;
        uint8_t *v4 = const_value;
        if (y_low >= 0) 
        {
            if (x_low >= 0) v1 = src + y_low * src_line_size + x_low * 3;

            if (x_high < src_width) v2 = src + y_low * src_line_size + x_high * 3;
        }

        if (y_high < src_height) 
        {
            if (x_low >= 0) v3 = src + y_high * src_line_size + x_low * 3;

            if (x_high < src_width) v4 = src + y_high * src_line_size + x_high * 3;
        }

        // same to opencv
        c0 = floorf(w1 * v1[0] + w2 * v2[0] + w3 * v3[0] + w4 * v4[0] + 0.5f);
        c1 = floorf(w1 * v1[1] + w2 * v2[1] + w3 * v3[1] + w4 * v4[1] + 0.5f);
        c2 = floorf(w1 * v1[2] + w2 * v2[2] + w3 * v3[2] + w4 * v4[2] + 0.5f);
    }

    int area = dst_width * dst_height;
    float *pdst_c0 = dst + dy * dst_width + dx;
    float *pdst_c1 = pdst_c0 + area;
    float *pdst_c2 = pdst_c1 + area;
    *pdst_c0 = c0;
    *pdst_c1 = c1;
    *pdst_c2 = c2;
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容