Python 学习笔记6 2018-04-13

文件操作:

    1,文件的读写操作

    2,文件的各种系统操作

    3,存储对象


1,文件的读写操作

读写数据:

最基本的文件操作当然就是在文件中读写数据。这也是很容易掌握的。现在打开一个文件以进行写操作:

1. fileHandle = open ( 'test.txt', 'w' )

‘w'是指文件将被写入数据,语句的其它部分很好理解。下一步就是将数据写入文件:

1. fileHandle.write ( 'This is a test.\nReally, it is.' )

这个语句将“This is a test.”写入文件的第一行,“Really, it is.”写入文件的第二行。最后,我们需要做清理工作,并且关闭文件:

1. fileHandle.close()


追加数据

正如你所见,在Python的面向对象机制下,这确实非常简单。需要注意的是,当你再次使用“w”方式在文件中写数据,所有原来的内容都会被删除。如果想保留原来的内容,可以使用“a”方式在文件中结尾附加数据:

1. fileHandle = open ( 'test.txt', 'a' )

2. fileHandle.write ( '\n\nBottom line.' )

3. fileHandle.close()


基于行的读写 line

1. fileHandle = open ( 'test.txt' )

2. print fileHandle.readline() # "This is a test."

3. fileHandle.close()


同时,也可以将文件内容保存到一个list中:

1. fileHandle = open ( 'test.txt' ) 

2. fileList = fileHandle.readlines() 

3. for fileLine in fileList: 

4.    print '>>', fileLine 

5. fileHandle.close() 


随机访问文件中的位置 seek 和 tell

seek(n) :将光标移动到n位置

tell():  获取光标目前的位置

Python在读取一个文件时,会记住其在文件中的位置,如下所示:

1. fileHandle = open ( 'test.txt' )

2. garbage = fileHandle.readline()

3. fileHandle.readline() # "Really, it is."fileHandle.close()

可以看到,只有第二行显示出来。然而,我们可以让Python从头开始读来解决这个问题:

1. fileHandle = open ( 'test.txt' )

2. garbage = fileHandle.readline()

3. fileHandle.seek ( 0 )     #将光标指到某个未知

4. print fileHandle.readline() # "This is a test."

5. fileHandle.close()

在上面这个例子中,我们让Python从文件第一个字节开始读取数据。所以,第一行文字显示了出来。当然,我们也可以获取Python在文件中的位置:

1. fileHandle = open ( 'test.txt' )

2. print fileHandle.readline() # "This is a test."

3. print fileHandle.tell() # "17"  获取光标目前的位置

4. print fileHandle.readline() # "Really, it is."


二进制方式读写

在Windows和Macintosh环境下,有时可能需要以二进制方式读写文件,比如图片和可执行文件。此时,只要在打开文件的方式参数中增加一个“b”即可:

1. fileHandle = open ( 'testBinary.txt', 'wb' )

2. fileHandle.write ( 'There is no spoon.' )

3. fileHandle.close()


1. fileHandle = open ( 'testBinary.txt', 'rb' )

2. print fileHandle.read()

3. fileHandle.close()

python本身并没有对二进制进行支持,不过提供了一个模块来弥补,就是struct模块。

python没有二进制类型,但可以存储二进制类型的数据,就是用string字符串类型来存储二进制数据,这也没关系,因为string是以1个字节为单位的。

import struct

a=12.34

#将a变为二进制

bytes=struct.pack('i',a)

此时bytes就是一个string字符串,字符串按字节同a的二进制存储内容相同。


再进行反操作

现有二进制数据bytes,(其实就是字符串),将它反过来转换成python的数据类型:

a,=struct.unpack('i',bytes)

注意,unpack返回的是tuple

所以如果只有一个变量的话:

bytes=struct.pack('i',a)

那么,解码的时候需要这样

a,=struct.unpack('i',bytes) 或者 (a,)=struct.unpack('i',bytes)

如果直接用a=struct.unpack('i',bytes),那么 a=(12.34,) ,是一个tuple而不是原来的浮点数了。

如果是由多个数据构成的,可以这样:

a='hello'    #python3 版本需要在字符串前添加 b  转化成bytes类型

b='world!'  #python3 版本需要在字符串前添加 b  转化成bytes类型

c=2

d=45.123

bytes=struct.pack('5s6sif',a,b,c,d)

此时的bytes就是二进制形式的数据了,可以直接写入文件比如 binfile.write(bytes)

然后,当我们需要时可以再读出来,bytes=binfile.read()

再通过struct.unpack()解码成python变量

a,b,c,d=struct.unpack('5s6sif',bytes)

'5s6sif'这个叫做fmt,就是格式化字符串,由数字加字符构成,5s表示占5个字符的字符串,2i,表示2个整数等等,下面是可用的字符及类型,ctype表示可以与python中的类型一一对应。


2,python 函数

定义函数

在Python中,定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。

def my_abs(x):

      if x >=0:

          return x

      else:

          return -x

请自行测试并调用my_abs看看返回结果是否正确。

请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。

如果没有return语句,函数执行完毕后也会返回结果,只是结果为None。

return None可以简写为return。

空函数

如果想定义一个什么事也不做的空函数,可以用pass语句:

def nop():

  pass

pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。

参数检查

调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError:


但是如果参数类型不对,Python解释器就无法帮我们检查。试试my_abs和内置函数abs的差别:



当传入了不恰当的参数时,内置函数abs会检查出参数错误,而我们定义的my_abs没有参数检查,会导致if语句出错,出错信息和abs不一样。所以,这个函数定义不够完善。

让我们修改一下my_abs的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance()实现:

def my_abs(x):

    if not isinstance(x, (int, float)):

        raise TypeError('bad operand type')

    if x >=0:

        return x

    else:

        return -x

添加了参数检查后,如果传入错误的参数类型,函数就可以抛出一个错误:



返回多个值

函数可以返回多个值:


然后,我们就可以同时获得返回值:


但其实这只是一种假象,Python函数返回的仍然是单一值:


原来返回值是一个tuple

函数的参数

定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

(1)位置参数

定义一个函数

def power(x):   

    return x*x

在函数power(x)里面 参数x就是一个位置参数,我们在调用函数power时,必须且传入仅有一个参数x: 

power(5)

现在,如果我们要计算x3怎么办?可以再定义一个power3函数,但是如果要计算x4、x5……怎么办?我们不可能定义无限多个函数。

可以把power(x)修改为power(x, n):

def power(x,n):

    s = 1

    while n>0:   

        n=n-1

        s = s*x

    return s

对于这个修改后的power(x, n)函数,可以计算任意n次方:

power(5,2)

power(5,3)

修改后的power(x, n)函数有两个参数:x和n,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数x和n

(2)默认参数


n默认等于2

这样,当我们调用power(5)时,相当于调用power(5, 2):

而对于n > 2的其他情况,就必须明确地传入n,比如power(5, 3)

【注意】

#1,是必选参数在前,默认参数在后;

#2,二是如何设置默认参数;

当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。

默认参数,最大的好处是能降低调用函数的难度


有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用fn('Tom',19,'hainan'),意思是,除了name,age这两个参数外,最后1个参数应用在参数city上,sex参数由于没有提供,仍然使用默认值。也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用fn('Ji',99,sex='女',city='beijing'),意思是,sex,city参数用传进去的值,其他默认参数继续使用默认值。

默认参数的坑:


可以看到函数正常调用的是时候,结果没有问题,当时当使用默默参数的时候 第二个结果不是我们想要得到的

原因解释如下:

Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。

定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:


(3)可变参数

要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c……作为一个list或tuple传进来,这样,函数可以定义如下:

则在调用的时候 需要先组装出一个list 或 tuple

fn([1,2,3])

如果我们把函数的参数变成可变参数:

定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:

(4) 关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。

函数person除了必选参数name和age外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到name和age这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求

(5)命名关键字参数

对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw检查


如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city和job作为关键字参数。这种方式定义的函数如下:

和关键字参数**kw不同,命名关键字参数需要一个特殊分隔符*,*后面的参数被视为命名关键字参数。


参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。

例如:

def f1(a, b, c=0, *args, **kw):

    print('a =', a,'b =', b,'c =', c,'args =', args,'kw =', kw)

def f2(a, b, c=0, *, d, **kw): 

    print('a =', a,'b =', b,'c =', c,'d =', d,'kw =', kw)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 195,783评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,360评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 142,942评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,507评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,324评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,299评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,685评论 3 386
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,358评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,652评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,704评论 2 312
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,465评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,318评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,711评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,991评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,265评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,661评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,864评论 2 335

推荐阅读更多精彩内容

  • 〇、前言 本文共108张图,流量党请慎重! 历时1个半月,我把自己学习Python基础知识的框架详细梳理了一遍。 ...
    Raxxie阅读 18,894评论 17 410
  • python学习笔记 声明:学习笔记主要是根据廖雪峰官方网站python学习学习的,另外根据自己平时的积累进行修正...
    renyangfar阅读 3,004评论 0 10
  • Python 面向对象Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对...
    顺毛阅读 4,203评论 4 16
  • 今天的天气格外的冷,是爸爸去托付接的闺女,一进门,我就问:“闺女,冷不冷?”闺女笑嘻嘻的回答我说:“不冷,妈妈!今...
    天山雪莲_421b阅读 130评论 0 0
  • 我也曾无数次在红的透心的灯光下感叹那些与我擦肩而过的生命中的过客,用泪水来祭奠我那逝去的刻在鹅卵石上抹不去的青春...
    chenchen大人阅读 357评论 4 1