python矩阵转置

python中的矩阵转置

首先,数据应该是np.asarray型,
然后,使用numpy.transpose来操作。


transpose方法只能处理高维数组(>1),如果处理一维数组会报错;
对于二维数组:

data1 = np.arange(4).reshape((2,2))
print(data1)
>>[[0 1]
    [2 3]]
data1 = np.transpose(data1)
print(data1)
>>[[0 2]
    [1 3]]

对于三维数组:(3,2,2)的数组对应转置为(2,2,3)

data1 = np.arange(12).reshape((3,2,2))
print(data1)
>>[[[ 0  1]
  [ 2  3]]

 [[ 4  5]
  [ 6  7]]

 [[ 8  9]
  [10 11]]]

data1 = np.transpose(data1)
print(data1)
>>[[[ 0  4  8]
  [ 2  6 10]]

 [[ 1  5  9]
  [ 3  7 11]]]

对于四维数组:(2,3,2,2)的数组对于转置为(2,2,3,2)

data1 = np.arange(24).reshape((2,3,2,2))
print(data1)
>>[[[[ 0  1]
   [ 2  3]]

  [[ 4  5]
   [ 6  7]]

  [[ 8  9]
   [10 11]]]


 [[[12 13]
   [14 15]]

  [[16 17]
   [18 19]]

  [[20 21]
   [22 23]]]]

data1 = np.transpose(data1)
print(data1)
>>[[[[ 0 12]
   [ 4 16]
   [ 8 20]]

  [[ 2 14]
   [ 6 18]
   [10 22]]]


 [[[ 1 13]
   [ 5 17]
   [ 9 21]]

  [[ 3 15]
   [ 7 19]
   [11 23]]]]

所以默认的transpose()是将数组的形状和对应的元素全部倒置。
对于有参数的transpose:对于三维数组,原型数组的参数应该是(0,1,2),对应的是外行,子行,子列,如果变成(1,0,2)就是将外行变成子行,子行变成外行。对于元素索引也发生同样改变,比如原来的元素3的索引是(0,1,1),转换后就是(1,0,1)

data1 = np.arange(12).reshape((2,3,2))
print(data1)
data2 = data1.transpose(1, 0, 2)
print(data2)
>>[[[ 0  1]
  [ 2  3]
  [ 4  5]]

 [[ 6  7]
  [ 8  9]
  [10 11]]]
>>[[[ 0  1]
  [ 6  7]]

 [[ 2  3]
  [ 8  9]]

 [[ 4  5]
  [10 11]]]
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容