Python爬取哈尔滨旅游爆火视频数据并进行可视化分析

16IP (2).png

前言
哈尔滨作为中国北方的重要城市,独特的冰雪风情和丰富的文化底蕴而受到游客的青睐。随着抖音等短视频平台的兴起,越来越多关于哈尔滨旅游的视频在网络上出现文章旨在利用Python编程语言,从音视频网站上抓取哈尔滨旅游抖音相关视频数据,并通过数据可视化技术对这些数据进行分析,以期为旅游行业的发展和营销提供依据的大力支持。
需求场景
了解用户对于哈尔滨旅游的兴趣点和热门消费,以及他们对相关需求视频的喜好程度,对于旅游行业的市场营销和产品推广至关重要。因此,我们可以利用Python编程语言,从声音等短视频平台上爬取与哈尔滨旅游相关的视频数据,将这些数据进行分析和可视化展示,以便更好地了解用户的需求和喜好。
目标分析
我们的目标是通过Python编程语言实现以下两个主要目标:

  1. 从抖音等短视频平台上爬取与哈尔滨旅游相关的视频数据,包括视频标题、发布者、点赞数、评论数等信息。
  2. 对爬取的视频数据进行清理、整理和可视化分析,以便更好地了解用户对于哈尔滨旅游的兴趣和热度。
    爬取方案
    在爬取过程中,我们可能会遇到一些问题,例如网站反爬虫机制、页面结构变化等。为了解决这些问题,需要我们设计一个完整的爬取方案,包括以下步骤:
  3. 确定目标网站:首先确定要爬取的目标网站,例如抖音的搜索页面或特定用户的主页。
  4. 发送网络请求:使用Python中的请求发送网络请求,获取目标网页的HTML内容。
  5. 解析网页内容:使用BeautifulSoup等库解析HTML内容,提取出所需的视频信息,如标题、发布者、点赞数、评论数等。
  6. 数据存储:将提取到的视频存储到合适的数据结构中,如列表、字典或Pandas的DataFrame。
  7. 处理反爬虫机制:如果遇到网站的反爬虫,可能需要使用代理IP、用户代理等技术来规避限制机制。
    完整爬取过程如下所示:
import requests
from bs4 import BeautifulSoup

# 代理信息
proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

# 目标网站
url = 'https://www.douyin.com/search/哈尔滨旅游'

# 设置代理
proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
    "host": proxyHost,
    "port": proxyPort,
    "user": proxyUser,
    "pass": proxyPass,
}
proxies = {
    "http": proxyMeta,
    "https": proxyMeta,
}

# 发送网络请求,获取网页内容
response = requests.get(url, proxies=proxies)
html_content = response.text

# 解析网页内容,提取视频信息
soup = BeautifulSoup(html_content, 'html.parser')
videos = soup.find_all('div', class_='video-item')

video_data = []
for video in videos:
    title = video.find('p', class_='title').text
    author = video.find('p', class_='author').text
    likes = video.find('p', class_='likes').text
    comments = video.find('p', class_='comments').text
    video_info = {
        'Title': title,
        'Author': author,
        'Likes': likes,
        'Comments': comments
    }
    video_data.append(video_info)

# 数据存储
import pandas as pd
df = pd.DataFrame(video_data)
print(df)

接下来,我们将使用Python中的数据处理和分析库Pandas和数据可视化库Matplotlib来对获取的视频数据进行可视化分析。以下是一个简单的示例代码,用于对视频点赞数和评论数进行可视化:

import pandas as pd
import matplotlib.pyplot as plt

# 假设 video_data 是一个包含视频数据的 Pandas DataFrame
video_data = pd.DataFrame({
    'Title': ['Video 1', 'Video 2', 'Video 3', 'Video 4'],
    'Likes': [1000, 1500, 800, 2000],
    'Comments': [300, 500, 200, 600]
})

# 绘制柱状图
plt.figure(figsize=(10, 6))
plt.bar(video_data['Title'], video_data['Likes'], color='skyblue')
plt.xlabel('Video Title')
plt.ylabel('Likes')
plt.title('Likes of Harbin Tourism Videos')
plt.show()

# 绘制折线图
plt.figure(figsize=(10, 6))
plt.plot(video_data['Title'], video_data['Comments'], marker='o', color='orange')
plt.xlabel('Video Title')
plt.ylabel('Comments')
plt.title('Comments of Harbin Tourism Videos')
plt.show()

最后通过本文的介绍,读者可以了解如何使用Python编程语言从抖音等短视频平台上爬取哈尔滨旅游相关视频数据,并通过数据清洗、分析和可视化技术来深入挖掘这些数据的信息。旅游行业的发展和营销提供了有力的支持,帮助相关行业者更好地了解用户需求和市场趋势,从而制定更有效的营销策略和产品推广方案。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容