大数据不就是写SQL吗?

【原创,转载请注明出处】

应届生小祖参加了个需求分析会回来后跟我说被产品怼了一句:

"不就是写SQL吗,要那么久吗"

我去,欺负我小弟,这我肯定不能忍呀,于是我写了一篇文章发在了公司的wiki

image

贴出来给大家看看,省略了一些敏感的内容。当然内部版言辞也会温和一点,嘻嘻

在哪里写SQL?

这个问题高级点的问法是用哪种SQL引擎?

SparkSQL、Hive、Phoenix、Drill、Impala、Presto、Druid、Kylin (这里的SQL引擎是广义的,大家不必钻牛角尖)

我用一句话概括下这几个东西,先不管你们现在看不看得懂:

  • Hive:把sql解析后用MapReduce跑
  • SparkSQL:把sql解析后用Spark跑,比hive快点
  • Phoenix:一个绕过了MapReduce运行在HBase上的SQL框架
  • Drill/Impala/Presto 交互式查询,都是类似google Dremel的东西,区别这里就不说了
  • Druid/Kylin olap预计算系统

这就涉及到更多的问题了,对这些组件不熟悉的同学可能调研过程就得花上一个多月。

比如需求是实时计算还是离线分析?

数据是增量数据还是静态数据?

数据量有多大?

能容忍多长的响应时间?

总之,功能、性能、稳定性、运维难度、开发难度这些都是要考虑的

对哪里的数据执行SQL?

你以为选完引擎就可以开写了?too naive!

上面提到的大部分工具都仅仅是查询引擎,存储呢?

“啥,为啥还要管存储?”

不管存储,那是要把PB级的数据存在mysql是吧...

关系型数据库像mysql这种,查询引擎和存储是紧耦合的,这其实是有助于优化性能的,你不能把它们拆分开来。

而大数据系统SQL引擎一般都是独立于数据存储系统,获得了更大的灵活性。这都是出于数据量和性能的考虑

这涉及到的问题就更多了。先要搞清楚引擎支持对接哪些存储,怎么存查询起来方便高效。

可以对接的持久化存储我截个图,感受一下(这还只是一小部分)

image

用哪种语法写SQL?

你以为存储和查询搞定就可以开写了?你以为全天下的sql都是一样的?并不是!

并不是所有的引擎都支持join

并不是所有的distinct都是精准计算的

并不是所有的引擎都支持limit分页

还有,如果处理复杂的场景经常会需要自定义sql方法,那如何自定义呢,写代码呀

举几个简单而常见的栗子:

见过这样的sql吗?

select `user`["user_id"] from tbl_test ;

见过这种操作吗?

insert overwrite table tbl_test select * from tbl_test  where id>0; 

卧槽,这不会锁死吗?hive里不会,但是不建议这样做。

还能这么写

from tbl_test insert overwrite table tbl_test select *   where id>0; 

怎么用更高效的方式写SQL?

好了,全都搞定了,终于可以开始愉快地写SQL了。

写SQL的过程我用小祖刚来公司时的一句话来总结:

“卧槽,这条SQL有100多行!”

事实表,维表的数据各种join反复join,这还不算完还要再join不同时间的数据,还要#@%^#^...

不说了,写过的人一定知道有多恶心

(此处省略100多行字)

终于写完了,千辛万苦来到这一步,满心欢喜敲下回车...

时间过去1分钟...

10分钟...

30分钟...

1小时...

2小时...

......

别等了,这样下去是不会有结果的。

老实看日志吧,看日志也是一门很大的学问。

首先你得搞清楚这个sql是怎么运行,底层是mapReduce还是spark还是解析成了其他应用的put、get等接口;

然后得搞清楚数据是怎么走的,有没有发生数据倾斜,怎么优化

同时你还得注意资源,cpu、内存、io等

最后

产品又来需求了,现有系统还无法实现,上面四步再折腾一遍...

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容