MySQL数据库索引

一、数据库索引介绍

索引是一种特殊的文件(MySql数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针,直接在索引中查找符合条件的选项,加快数据库的查询速度,而不是一行一行去遍历数据后才选择出符合条件的。如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录。表里面的记录数量越多,这个操作的代价就越高。如果作为搜索条件的列上已经创建了索引,MySQL无需扫描任何记录即可迅速得到目标记录所在的位置。

索引的本质是什么?索引有什么优点,缺点是什么?

索引是帮助MySQL高效获取数据的数据结构。因此,索引的本质是一种数据结构。

在数据之外,数据库系统还可以维护满足特定查找算法的数据结构,这些数据结构以某种方式指向真实数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

优点:

1、提高数据检索效率,降低数据库的IO成本;

2、通过索引对数据进行排序,降低了数据排序的成本,降低了CPU的利用率;

缺点:

1、索引实际上也是一张表,索引会占用一定的存储空间;

2、更新数据表的数据时,需要同时维护索引表,因此,会降低insert、update、delete的速度;

二、MySQL索引类型包括哪些?

1、普通索引

这是最基本的索引,它没有任何限制。它有以下几种创建方式:

◆ 创建索引

CREATE INDEX indexName ON mytable(username(length));

如果是CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型,必须指定 length,下同。

◆ 修改表结构

ALTER mytable ADD INDEX [indexName] ON (username(length))

◆ 创建表的时候直接指定

CREATE TABLE mytable( 

ID INT NOT NULL, 

username VARCHAR(16) NOT NULL, 

INDEX [indexName] (username(length)) 

); 

删除索引的语法:

DROP INDEX [indexName] ON mytable;

2、唯一索引

它与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:

◆创建索引

CREATE UNIQUE INDEX indexName ON mytable(username(length))

◆修改表结构

ALTER mytable ADD UNIQUE [indexName] ON (username(length))

◆创建表的时候直接指定

CREATE TABLE mytable( 

ID INT NOT NULL, 

username VARCHAR(16) NOT NULL, 

UNIQUE [indexName] (username(length)) 

); 

3、主键索引

它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引:

CREATE TABLE mytable( 

ID INT NOT NULL, 

username VARCHAR(16) NOT NULL, 

PRIMARY KEY(ID) 

); 

当然也可以用 ALTER 命令。记住:一个表只能有一个主键。

4、组合索引

为了形象地对比单列索引和组合索引,为表添加多个字段:

CREATE TABLE mytable( 

ID INT NOT NULL, 

username VARCHAR(16) NOT NULL, 

city VARCHAR(50) NOT NULL, 

age INT NOT NULL

); 

为了进一步榨取MySQL的效率,就要考虑建立组合索引。就是将 name, city, age建到一个索引里:

ALTER TABLE mytable ADD INDEX name_city_age (name(10),city,age);

建表时,usernname长度为 16,这里用 10。这是因为一般情况下名字的长度不会超过10,这样会加速索引查询速度,还会减少索引文件的大小,提高INSERT的更新速度。

如果分别在 usernname,city,age上建立单列索引,让该表有3个单列索引,查询时和上述的组合索引效率也会大不一样,远远低于我们的组合索引。虽然此时有了三个索引,但MySQL只能用到其中的那个它认为似乎是最有效率的单列索引。

建立这样的组合索引,其实是相当于分别建立了下面三组组合索引:

usernname,city,age 

usernname,city 

usernname 

为什么没有 city,age这样的组合索引呢?这是因为MySQL组合索引“最左前缀”的结果。简单的理解就是只从最左面的开始组合。并不是只要包含这三列的查询都会用到该组合索引,下面的几个SQL就会用到这个组合索引:

SELECT * FROM mytable WHREE username="admin" AND city="郑州"

SELECT * FROM mytable WHREE username="admin"

而下面几个则不会用到:

SELECT * FROM mytable WHREE age=20 AND city="郑州"

SELECT * FROM mytable WHREE city="郑州"

三、 InnoDB存储索引

在数据库中,如果索引太多,应用程序的性能可能会受到影响;如果索引太少,又会对查询性能产生影响。所以,我们要追求两者的一个平衡点,足够多的索引带来查询性能提高,又不因为索引过多导致修改数据等操作时负载过高。

InnoDB支持3种常见索引:

 ● 哈希索引

 ● B+ 树索引

 ● 全文索引

我们接下来要详细讲解的就是B+ 树索引和全文索引。

哈希索引

学习哈希索引之前,我们先了解一些基础的知识:哈希算法。哈希算法是一种常用的算法,时间复杂度为O(1)。它不仅应用在索引上,各个数据库应用中也都会使用。

哈希表

哈希表(Hash Table)也称散列表,由直接寻址表改进而来。


在该表中U表示关键字全集,K表示实际存在的关键字,右边的数组(哈希表)表示在内存中可以直接寻址的连续空间,哈希表中每个插槽关联的单向链表中存储实际数据的真实地址。

如果右边的数组直接使用直接寻址表,那么对于每一个关键字K都会存在一个h[K]且不重复,这样存在一些问题,如果U数据量过大,那么对于计算机的可用容量来说有点不实际。而如果集合K占比U的比例过小,则分配的大部分空间都要浪费。

因此我们使用哈希表,我们通过一些函数h(k)来确定映射关系,这样让离散的数据尽可能均匀分布的利用数组中的插槽,但会有一个问题,多个关键字映射到同一个插槽中,这种情况称为碰撞(collision),数据库中采用最简单的解决方案:链接法(chaining)。也就是每个插槽存储一个单项链表,所有碰撞的元素会依次形成链表中的一个结点,如果不存在,则链表指向为NULL。

而使用的函数h(k)成为哈希函数,它必须能够很好的进行散列。最好能够避免碰撞或者达到最小碰撞。一般为了更好的处理哈希的关键字,我们会将其转换为自然数,然后通过除法散列、乘法散列或者全域散列来实现。数据库一般使用除法散列,即当有m个插槽时,我们对每个关键字k进行对m的取模:h(k) = k % m。

InnoDB存储引擎中的哈希算法

InnoDB存储引擎使用哈希算法来查找字典,冲突机制采用链表,哈希函数采用除法散列。对于缓冲池的哈希表,在缓存池中的每页都有一个chain指针,指向相同哈希值的页。对于除法散列,m的值为略大于2倍缓冲池页数量的质数。如当前innodb_buffer_pool_size大小为10M,则共有640个16KB的页,需要分配1280个插槽,而略大于的质数为1399,因此会分配1399个槽的哈希表,用来哈希查询缓冲池中的页。

而对于将每个页转换为自然数,每个表空间都有一个space_id,用户要查询的是空间中某个连续的16KB的页,即偏移量(offset),InnoDB将space_id左移20位,再加上space_id和offset,即K=space_id<<20+space_id+offset,然后使用除法散列到各个槽中。

自适应哈希索引

自适应哈希索引采用上面的哈希表实现,属于数据库内部机制,DBA不能干预。它只对字典类型的查找非常快速,而对范围查找等却无能为力,如:

select * from t where f='100';

我们可以查看自适应哈希索引的使用情况:

mysql> show engine innodb status\G;

*************************** 1. row ***************************

  Type: InnoDB

  Name:

Status:

=====================================

2019-05-13 23:32:21 7f4875947700 INNODB MONITOR OUTPUT

=====================================

Per second averages calculated from the last 32 seconds

...

-------------------------------------

INSERT BUFFER AND ADAPTIVE HASH INDEX

-------------------------------------

Ibuf: size 1, free list len 1226, seg size 1228, 0 merges

merged operations:

insert 0, delete mark 0, delete 0

discarded operations:

insert 0, delete mark 0, delete 0

Hash table size 276671, node heap has 1288 buffer(s)

0.16 hash searches/s, 16.97 non-hash searches/s

我们可以看到自适应哈希的使用情况,可以通过最后一行的hash searches/non-hash searches来判断使用哈希索引的效率。

我们可以使用innodb_adaptive_hash_index参数来禁用或启用此特性,默认开启。

B+ 树索引

B+ 树索引是目前关系型数据库系统中查找最为常用和有效的索引,其构造类似于二叉树,根据键值对快速找到数据。B+ 树(balance+ tree)由B树(banlance tree 平衡二叉树)和索引顺序访问方法(ISAM: Index Sequence Access Method)演化而来,这几个都是经典的数据结构。而MyISAM引擎最初也是参考ISAM数据结构设计的。

基础数据结构

想要了解B+ 树数据结构,我们先了解一些基础的知识。

(1)二分查找法

又称为折半查找法,指的是将数据顺序排列,通过每次和中间值比较,跳跃式查找,每次缩减一半的范围,快速找到目标的算法。其算法复杂度为log2(n),比顺序查找要快上一些。

如图所示,从有序列表中查找48,只需要3步:

详细的算法可以参考二分查找算法。

(2)二叉查找树

二叉查找树的定义是在一个二叉树中,左子树的值总是小于根键值,根键值总是小于右子树的值。在我们查找时,每次都从根开始查找,根据比较的结果来判断继续查找左子树还是右子树。其查找的方法非常类似于二分查找法。

(3)平衡二叉树

二叉查找树的定义非常宽泛,可以任意构造,但是在极端情况下查询的效率和顺序查找一样,如只有左子树的二叉查找树。

若想构造一个性能最大的二叉查找树,就需要该树是平衡的,即平衡二叉树(由于其发明者为G. M. Adelson-Velsky 和 Evgenii Landis,又被称为AVL树)。其定义为必须满足任何节点的两个子树的高度最大差为1的二叉查找树。平衡二叉树相对结构较优,而最好的性能需要建立一个最优二叉树,但由于维护该树代价高,因此一般平衡二叉树即可。

平衡二叉树查询速度很快,但在树发生变更时,需要通过一次或多次左旋和右旋来达到树新的平衡。这里不发散讲。

B+ 树

了解了基础的数据结构后,我们来看下B+ 树的实现,其定义十分复杂,简单来说就是在B树上增加规定:

1、叶子结点存数据,非叶子结点存指针

2、所有叶子结点从左到右用双向链表记录

目标是为磁盘或其他直接存取辅助设备设计的一种平衡查找树。在该树中,所有的记录都按键值的大小放在同一层的叶子节点上,各叶子节点之间有指针进行连接(非连续存储),形成一个双向链表。索引节点按照平衡树的方式构造,并存在指针指向具体的叶子节点,进行快速查找。

下面的B+ 树为数据较少时,此时高度为2,每页固定存放4条记录,扇出固定为5(图上灰色部分)。叶子节点存放多条数据,是为了降低树的高度,进行快速查找。

当我们插入28、70、95 3条数据后,B+ 树由于数据满了,需要进行页的拆分。此时高度变为3,每页依然是4条记录,双向链表未画出但是依然是存在的,现在可以看出来是一个平衡二叉树的雏形了。

InnoDB的B+ 树索引

InnoDB的B+ 树索引的特点是高扇出性,因此一般树的高度为2~4层,这样我们在查找一条记录时只用I/O 2~4次。当前机械硬盘每秒至少100次I/O/s,因此查询时间只需0.02~0.04s。

数据库中的B+ 树索引分为聚集索引(clustered index)和辅助索引(secondary index)。它们的区别是叶子节点存放的是否为一整行的完整数据。

聚集索引

聚集索引就是按照每张表的主键(唯一)构造一棵B+ 树,同时叶子节点存放整行的完整数据,因此将叶子节点称为数据页。由于定义了数据的逻辑顺序,聚集索引也能快速的进行范围类型的查询。

聚集索引的叶子节点按照逻辑顺序连续存储,叶子节点内部物理上连续存储,作为最小单元,叶子节点间通过双向指针连接,物理存储上不连续,逻辑存储上连续。

聚集索引能够针对主键进行快速的排序查找和范围查找,由于是双向链表,因此在逆序查找时也非常快。

我们可以通过explain命令来分析MySQL数据库的执行计划:

# 查看表的定义,可以看到id为主键,name为普通列

mysql> show create table dimensionsConf;

| Table          | Create Table   

| dimensionsConf | CREATE TABLE `dimensionsConf` (

  `id` int(11) NOT NULL AUTO_INCREMENT,

  `name` varchar(20) DEFAULT NULL,

  `remark` varchar(1024) NOT NULL,

  PRIMARY KEY (`id`),

  FULLTEXT KEY `fullindex_remark` (`remark`)

) ENGINE=InnoDB AUTO_INCREMENT=178 DEFAULT CHARSET=utf8 |

1 row in set (0.00 sec)

# 先测试一个非主键的name属性排序并查找,可以看到没有使用到任何索引,且需要filesort(文件排序),这里的rows为输出行数的预估值

mysql> explain select * from dimensionsConf order by name limit 10\G;

*************************** 1. row ***************************

          id: 1

  select_type: SIMPLE

        table: dimensionsConf

        type: ALL

possible_keys: NULL

          key: NULL

      key_len: NULL

          ref: NULL

        rows: 57

        Extra: Using filesort

1 row in set (0.00 sec)

# 再测试主键id的排序并查找,此时使用主键索引,在执行计划中没有了filesort操作,这就是聚集索引带来的优化

mysql> explain select * from dimensionsConf order by id limit 10\G;

*************************** 1. row ***************************

          id: 1

  select_type: SIMPLE

        table: dimensionsConf

        type: index

possible_keys: NULL

          key: PRIMARY

      key_len: 4

          ref: NULL

        rows: 10

        Extra: NULL

1 row in set (0.00 sec)

# 再查找根据主键id的范围查找,此时直接根据叶子节点的上层节点就可以快速得到范围,然后读取数据

mysql> explain select * from dimensionsConf where id>10 and id<10000\G;

*************************** 1. row ***************************

          id: 1

  select_type: SIMPLE

        table: dimensionsConf

        type: range

possible_keys: PRIMARY

          key: PRIMARY

      key_len: 4

          ref: NULL

        rows: 56

        Extra: Using where

1 row in set (0.00 sec)

辅助索引

辅助索引又称非聚集索引,其叶子节点不包含行记录的全部数据,而是包含一个书签(bookmark),该书签指向对应行数据的聚集索引,告诉InnoDB存储引擎去哪里查找具体的行数据。辅助索引与聚集索引的关系就是结构相似、独立存在,但辅助索引查找非索引数据需要依赖于聚集索引来查找。

全文索引

我们通过B+ 树索引可以进行前缀查找,如:

select * from blog where content like 'xxx%';

只要为content列添加了B+ 树索引(聚集索引或辅助索引),就可快速查询。但在更多情况下,我们在博客或搜索引擎中需要查询的是某个单词,而不是某个单词开头,如:

select * from blog where content like '%xxx%';

此时如果使用B+ 树索引依然是全表扫描,而全文检索(Full-Text Search)就是将整本书或文章内任意内容检索出来的技术。

倒排索引

全文索引通常使用倒排索引(inverted index)来实现,倒排索引和B+ 树索引都是一种索引结构,它需要将分词(word)存储在一个辅助表(Auxiliary Table)中,为了提高全文检索的并行性能,共有6张辅助表。辅助表中存储了单词和单词在各行记录中位置的映射关系。它分为两种:

inverted file index(倒排文件索引),表现为{单词,单词所在文档ID}

full inverted index(详细倒排索引),表现为{单词,(单词所在文档ID, 文档中的位置)}

对于这样的一个数据表:

倒排文件索引类型的辅助表存储为:

详细倒排索引类型的辅助表存储为,占用更多空间,也更好的定位数据,比提供更多的搜索特性:

全文检索索引缓存

辅助表是存在与磁盘上的持久化的表,由于磁盘I/O比较慢,因此提供FTS Index Cache(全文检索索引缓存)来提高性能。FTS Index Cache是一个红黑树结构,根据(word, list)排序,在有数据插入时,索引先更新到缓存中,而后InnoDB存储引擎会批量进行更新到辅助表中。

当数据库宕机时,尚未落盘的索引缓存数据会自动读取并存储,配置参数innodb_ft_cache_size控制缓存的大小,默认为32M,提高该值,可以提高全文检索的性能,但在故障时,需要更久的时间恢复。

在删除数据时,InnoDB不会删除索引数据,而是保存在DELETED辅助表中,因此一段时间后,索引会变得非常大,可以通过optimize table命令手动删除无效索引记录。如果需要删除的内容非常多,会影响应用程序的可用性,参数innodb_ft_num_word_optimize控制每次删除的分词数量,默认为2000,用户可以调整该参数来控制删除幅度。

全文检索限制

全文检索存在一个黑名单列表(stopword list),该列表中的词不需要进行索引分词,默认共有36个,如the单词。你可以自行调整:

mysql> select * from information_schema.INNODB_FT_DEFAULT_STOPWORD;

+-------+

| value |

+-------+

| a    |

| about |

| an    |

| are  |

| as    |

| at    |

| be    |

| by    |

| com  |

| de    |

| en    |

| for  |

| from  |

| how  |

| i    |

| in    |

| is    |

| it    |

| la    |

| of    |

| on    |

| or    |

| that  |

| the  |

| this  |

| to    |

| was  |

| what  |

| when  |

| where |

| who  |

| will  |

| with  |

| und  |

| the  |

| www  |

+-------+

36 rows in set (0.00 sec)

其他限制还有:

 ● 每张表只能有一个全文检索索引

 ● 多列组合的全文检索索引必须使用相同的字符集和字符序,不了解的可以参考MySQL乱码的原因和设置UTF8数据格式

 ● 不支持没有单词界定符(delimiter)的语言,如中文、日语、韩语等

全文检索

我们创建一个全文索引:

mysql> create fulltext index fullindex_remark on dimensionsConf(remark);

Query OK, 0 rows affected, 1 warning (0.39 sec)

Records: 0  Duplicates: 0  Warnings: 1

mysql> show warnings;

+---------+------+--------------------------------------------------+

| Level  | Code | Message                                          |

+---------+------+--------------------------------------------------+

| Warning |  124 | InnoDB rebuilding table to add column FTS_DOC_ID |

+---------+------+--------------------------------------------------+

1 row in set (0.00 sec)

全文检索有两种方法:

 ● 自然语言(Natural Language),默认方法,可省略:(IN NATURAL LANGUAE MODE)

 ● 布尔模式(Boolean Mode):(IN BOOLEAN MODE)

自然语言还支持一种扩展模式,后面加上:(WITH QUERY EXPANSION)。

其语法为MATCH()...AGAINST(),MATCH指定被查询的列,AGAINST指定何种方法查询。

自然语言检索

mysql> select remark from dimensionsConf where remark like '%baby%';

+-------------------+

| remark            |

+-------------------+

| a baby like panda |

| a baby like panda |

+-------------------+

2 rows in set (0.00 sec)

mysql> select remark from dimensionsConf where match(remark) against('baby' IN NATURAL LANGUAGE MODE);

+-------------------+

| remark            |

+-------------------+

| a baby like panda |

| a baby like panda |

+-------------------+

2 rows in set (0.00 sec)

# 查看下执行计划,使用了全文索引排序

mysql> explain select * from dimensionsConf where match(remark) against('baby');

+----+-------------+----------------+----------+------------------+------------------+---------+------+------+-------------+

| id | select_type | table          | type    | possible_keys    | key              | key_len | ref  | rows | Extra      |

+----+-------------+----------------+----------+------------------+------------------+---------+------+------+-------------+

|  1 | SIMPLE      | dimensionsConf | fulltext | fullindex_remark | fullindex_remark | 0      | NULL |    1 | Using where |

+----+-------------+----------------+----------+------------------+------------------+---------+------+------+-------------+

1 row in set (0.00 sec)

我们也可以查看各行数据的相关性,是一个非负的浮点数,0代表没有相关性:

mysql> select id,remark,match(remark) against('baby') as relevance from dimensionsConf;

+-----+-----------------------+--------------------+

| id  | remark                | relevance          |

+-----+-----------------------+--------------------+

| 106 | c                    |                  0 |

| 111 | 运营商            |                  0 |

| 115 | a baby like panda    | 2.1165735721588135 |

| 116 | a baby like panda    | 2.1165735721588135 |

+-----+-----------------------+--------------------+

4 rows in set (0.01 sec)

布尔模式检索

MySQL也允许用修饰符来进行全文检索,其中特殊字符会有特殊含义:

● +: 该word必须存在

● -: 该word必须排除

● (no operator): 该word可选,如果出现,相关性更高

● @distance: 查询的多个单词必须在指定范围之内

● >: 出现该单词时增加相关性

● <: 出现该单词时降低相关性

● ~: 出现该单词时相关性为负

● *: 以该单词开头的单词

● ": 表示短语

# 代表必须有a baby短语,不能有man,可以有lik开头的单词,可以有panda,

select remark from dimensionsConf where match(remark) against('+"a baby" -man lik* panda' IN BOOLEAN MODE);

扩展查询

当查询的关键字太短或不够清晰时,需要用隐含知识来进行检索,如database关联的MySQL/DB2等。但这个我并没太明白怎么使用,后续补充吧。

类似的使用是:

select * from articles where match(title,body) against('database' with query expansion);

如果任何问题或者建议,欢迎留言交流。

以上内容希望帮助到大家,很多PHPer在进阶的时候总会遇到一些问题和瓶颈,业务代码写多了没有方向感,不知道该从那里入手去提升,对此我整理了一些资料,包括但不限于:分布式架构、高可扩展、高性能、高并发、服务器性能调优、TP6,laravel,YII2,Redis,Swoole、Swoft、Kafka、Mysql优化、shell脚本、Docker、微服务、Nginx等多个知识点高级进阶干货需要的可以免费分享给大家,需要的可以加入我的PHP技术交流群点击此处

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容