重读KMP算法

这几天看了《大话数据结构》第五章-串,重新了解了串这个数据结构,当然其中最重要的模式匹配算法KMP有了新的认识,或者说是终于理解了。
接下来结合我的理解和CSDN中大佬的详解,讲一讲KMP吧!

朴素的模式匹配(BF算法、暴力算法)

简介

这是最早、最简单的模式匹配算法,就是简单的暴力算法,思路:

  • 主串S,模式串T
  • 从主串S第一位开始和模式串T第一位开始匹配,成功匹配返回匹配成功的第一位,匹配失败,主串S后移一位,模式串重新从头开始匹配

代码

//朴素的匹配,从pos位置开始匹配
int Index(string S, string T, int pos)
{
    int i = pos;
    int j = 0;
    while (i < S.length() && j < T.length())
    {
        if (S[i] == T[j])
        {
            //①如果当前字符匹配成功(即S[i] == T[j]),则i++,j++  
            ++i;
            ++j;
        }
        else
        {
            //②如果失配(即S[i]! = T[j]),令i =(i - j) + 1,j = 0  
            i = i - j + 1;
            j = 0;
        }
    } if (j == T.length())
        return i - j;
    else
        return -1;
}

S="goodgoogle",T="google"

  1. goodgoogle
    google
  2. goodgoogle
      google
  3. goodgoogle
        google
  4. goodgoogle
          google
  5. goodgoogle
            google

朴素的模式匹配就是这个过程,可以看出这种算法的时间复杂度很大,为了优化模式匹配就有了KMP算法

KMP算法

简介

KMP是由三位前辈研究出来的避免重复遍历的高效率模式匹配算法,它们分别是D.E.Knuth、J.H.Morris、V.R.Pratt。知道了吧KMP是来自这三位前辈的名字,我们在称之为克努特-莫里斯-普拉特算法。

原理

通俗的讲,KMP算法利用已匹配的现有信息,省去不必要的匹配过程,进而优化算法。

先上一个例子解释一下
S="abcababcax",T="abcabx"

  1. abcababcax
    abcabx
  2. abcababcax
      abcabx
  3. abcababcax
        abcabx
  4. abcababcax
          abcabx
  5. abcababcax
          abcabx
  6. abcababcax
          abcabx

1前5位“abcab”匹配成功,此时S的第i位"a"与T的第j位"x"匹配失败,i=5,j=5,按照朴素的模式匹配算法,接下来要让T串后移一位继续与S匹配,i变为1,j变成0,就是上面的过程,其实从1获取的匹配信息可以知道S的前三位"abc"已与T的相应位匹配成功,且"bc"并不等于"a",所以23步不可能匹配成功,i在第一步时已经等于5了,但经过2345过程5->1->2->3->4->5最后S的第i位"a"与T的第j位"c"匹配失败,i=5,j=2。可以发现之前的2345可以去掉,i在这变化中又回到5,这个过程变化的好像只是j的值,KMP要做的就是省去不必要的匹配过程,直接跳到合适的位置。

代码

//KMP
int KmpSearch(string S, string T, int pos)
{
    int i = pos;
    int j = 0;
    int Sl = S.length();
    int Tl = T.length();
    while (i < Sl && j < Tl)
    {
        //①如果j = -1,或者当前字符匹配成功(即S[i] == T[j]),都令i++,j++    
        if (j == -1 || S[i] == T[j])
        {
            i++;
            j++;
        }
        else
        {
            //②如果j != -1,且当前字符匹配失败(即S[i] != T[j]),则令 i 不变,j = next[j]    
            //next[j]即为j所对应的next值      
            j = next[j];
        }
    }
    if (j == Tl)
        return i - j;
    else
        return -1;
}

next数组

前面提到合适的位置,什么叫做合适的位置呢,就是主串S与模式串T失配时,i不变,只移动模式串T到合适的位置再与S匹配,这个合适的位置就存在next数组中。
上例中第一次在i=5,j=5失配,省去不必要的过程后i=5,j=2,也就是i不变,j从5变成2,这个过程中省去的是T前两位"ab"与S的45位"ab"匹配的过程,省去的原因是在第一次已经匹配过了,S的"abcab"与T的"abcab"匹配,可以发现,T的前缀和后缀都有"ab",则下次匹配可以从T的第2位"c"开始与S上次失配的第5位开始重新匹配。

最大相同前后缀

要计算next数组一定要知道最大相同前后缀,从上面的解释可以知道,j的变化与模式串T有关,在失配时j=next[j],所以要知道T最大前后缀与next数组的关系。

对于模式串T="abcabx"

模式串 a b c a b x
最大相同前后缀 0 0 0 1 2 0
next数组 -1 0 0 0 1 2

串为"a","ab","abc",时最大相同前后缀为0,"abca"为1及前后的"a","abcab"为2及前后的"ab"。把next 数组跟求得的最大相同前后缀对比后,不难发现,next 数组相当于“最大相同前后缀” 整体向右移动一位,然后初始值赋为-1。

代码

//next数组
void GetNext(string T, int next[])
{
    next[0] = -1;
    int k = -1;
    int j = 0;
    while (j <T.length() - 1)
    {
        //T[k]表示前缀,T[j]表示后缀
        if (k == -1 || T[j] == T[k])
        {
            ++k;
            ++j;
            next[j] = k;
        }
        else
        {
            k = next[k];
        }
    }
}

代码有点难理解,我简单解释一下,这里涉及了已知next[0,...,j],求next[j+1]的问题。

对于T的前j+1个序列字符:

  • 若T[k] == T[j],则next[j + 1 ] = next [j] + 1 = k + 1;
  • 若T[k ] ≠ T[j],如果此时T[ next[k] ] == T[j ],则next[ j + 1 ] = next[k] + 1,否则继续递归前缀索引k = next[k],而后重复此过程。 相当于在字符T[j+1]之前不存在长度为k+1的前缀"T0 T1, …, Tk-1 Tk"跟后缀“Tj-k Tj-k+1, …, Tj-1 Tj"相等,那么是否可能存在另一个值t+1 < k+1,使得长度更小的前缀 “T0 T1, …, Tt-1 Tt” 等于长度更小的后缀 “Tj-t Tj-t+1, …, Tj-1 Tj” 呢?如果存在,那么这个t+1 便是next[ j+1]的值,此相当于利用已经求得的next 数组(next [0, ..., k, ..., j])进行T串前缀跟T串后缀的匹配。
  • 原文链接:https://blog.csdn.net/v_JULY_v/article/details/7041827

next数组的优化

问题的出现

后来有人发现,KMP算法还是有缺陷的。
如果用之前的next 数组方法求模式串“abab”的next 数组,可得其next 数组为-1 0 0 1(0 0 1 2整体右移一位,初值赋为-1),当它跟下图中的文本串去匹配的时候,发现b跟c失配,于是模式串j = next[j] =1。

abacabababc
abab

右移2位后,b又跟c失配。事实上,因为在上一步的匹配中,已经得知p[3] = b,与s[3] = c失配,而右移两位之后,让p[ next[3] ] = p[1] = b 再跟s[3]匹配时,必然失配。

abacabababc
    abab

问题出在不该出现T[j] = T[ next[j] ]。为什么呢?理由是:当T[j] != S[i] 时,下次匹配必然是T[ next [j]] 跟S[i]匹配,如果T[j] = T[ next[j] ],必然导致后一步匹配失败(因为T[j]已经跟S[i]失配,然后你还用跟T[j]等同的值T[next[j]]去跟S[i]匹配,很显然,必然失配),所以不能允许T[j] = T[ next[j ]]。如果出现了T[j] = T[ next[j] ]咋办呢?如果出现了,则需要再次递归,即令next[j] = next[ next[j] ]。
原文链接:https://blog.csdn.net/v_JULY_v/article/details/7041827

代码

//优化过后的next 数组求法
void GetNextval(string T, int next[])
{
    next[0] = -1;
    int k = -1;
    int j = 0;
    while (j < T.length()- 1)
    {
        //T[k]表示前缀,T[j]表示后缀  
        if (k == -1 || T[j] == T[k])
        {
            ++j;
            ++k;
            //较之前next数组求法,改动在下面4行
            if (T[j] != T[k])
                next[j] = k;   //之前只有这一行
            else
                //因为不能出现T[j] = T[ next[j ]],所以当出现时需要继续递归,k = next[k] = next[next[k]]
                next[j] = next[k];
        }
        else
        {
            k = next[k];
        }
    }
}

KMP算法时间复杂度分析

朴素的模式匹配算法时间复杂度分析如下:(n为主串长度 ,m为模式串长度)

情况 时间复杂度 备注
最好情况 O(1) 一开始就匹配成功
最坏情况 O((n-m+1)*m) 每次不成功的匹配都发生在模式串的最后一个字符
平均情况 O(n+m) 根据等概率原则,平均是(n+m)/2次查找

总结

数据结构是非常重要的,这次的KMP算法也是花了好久才理解的。
欢迎批评指正。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,311评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,339评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,671评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,252评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,253评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,031评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,340评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,973评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,466评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,937评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,039评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,701评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,254评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,259评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,497评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,786评论 2 345