operator 模块是 Python 中内置的操作符函数接口,它定义了算术,比较和与标准对象 API 相对应的其他操作的内置函数。
operator 模块是用 C 实现的,所以执行速度比 Python 代码快。
逻辑运算
from operator import *
a = -1
b = 5
print('a =', a)
print('b =', b)
print()
print('not_(a) :', not_(a)) # False
print('truth(a) :', truth(a)) # True
print('is_(a, b) :', is_(a, b)) # False
print('is_not(a, b):', is_not(a, b)) # True
not_()
包括尾随下划线,因为not
是 Python 的关键字。 truth()
作为判断表达式用在if
语句中,或者将一个表达式转换成bool
。 is_()
和is
关键字的用法一样,is_not()
用法相同,只不过返回相反的答案。
比较运算符
from operator import *
a = 1
b = 5.0
print('a =', a)
print('b =', b)
for func in (lt, le, eq, ne, ge, gt):
print('{}(a, b): {}'.format(func.__name__, func(a, b)))
# a = 1
# b = 5.0
# lt(a, b): True
# le(a, b): True
# eq(a, b): False
# ne(a, b): True
# ge(a, b): False
# gt(a, b): False
功能是等同于使用表达式语法<
, <=
,==
,>=
,和>
。
算术运算符
from operator import *
a = -1
b = 5.0
c = 2
d = 6
print('\nPositive/Negative:')
print('abs(a):', abs(a)) # abs(a): 1
print('neg(a):', neg(a)) # neg(a): 1
print('neg(b):', neg(b)) # neg(b): -5.0
print('pos(a):', pos(a)) # pos(a): -1
print('pos(b):', pos(b)) # pos(b): 5.0
print('\nArithmetic:')
print('add(a, b) :', add(a, b)) # add(a, b) : 4.0
print('floordiv(a, b):', floordiv(a, b)) # floordiv(a, b): -1.0
print('floordiv(d, c):', floordiv(d, c)) # floordiv(d, c): 3
print('mod(a, b) :', mod(a, b)) # mod(a, b) : 4.0
print('mul(a, b) :', mul(a, b)) # mul(a, b) : -5.0
print('pow(c, d) :', pow(c, d)) # pow(c, d) : 64
print('sub(b, a) :', sub(b, a)) # sub(b, a) : 6.0
print('truediv(a, b) :', truediv(a, b)) # truediv(a, b) : -0.2
print('truediv(d, c) :', truediv(d, c)) # truediv(d, c) : 3.0
print('\nBitwise:')
print('and_(c, d) :', and_(c, d)) # and_(c, d) : 2
print('invert(c) :', invert(c)) # invert(c) : -3
print('lshift(c, d):', lshift(c, d)) # lshift(c, d): 128
print('or_(c, d) :', or_(c, d)) # or_(c, d) : 6
print('rshift(d, c):', rshift(d, c)) # rshift(d, c): 1
print('xor(c, d) :', xor(c, d)) # xor(c, d) : 4
序列运算符
使用序列的运算符可以分为四组:构建序列,搜索项目,访问内容以及从序列中删除项目。
from operator import *
a = [1, 2, 3]
b = ['a', 'b', 'c']
print('\nConstructive:')
print(' concat(a, b):', concat(a, b)) # concat(a, b): [1, 2, 3, 'a', 'b', 'c']
print('\nSearching:')
print(' contains(a, 1) :', contains(a, 1)) # contains(a, 1) : True
print(' contains(b, "d"):', contains(b, "d")) # contains(b, "d"): False
print(' countOf(a, 1) :', countOf(a, 1)) # countOf(a, 1) : 1
print(' countOf(b, "d") :', countOf(b, "d")) # countOf(b, "d") : 0
print(' indexOf(a, 5) :', indexOf(a, 1)) # indexOf(a, 5) : 0
print('\nAccess Items:')
print(getitem(b, 1)) # b
print(getitem(b, slice(1, 3))) # ['b', 'c']
print(setitem(b, 1, "d") # None
print(b) # ['a', 'd', 'c']
print(setitem(a, slice(1, 3), [4, 5])) # None
print(a) # [1, 4, 5]
print('\nDestructive:')
print(delitem(b, 1)) # None
print(b) # ['a', 'c']
print(delitem(a, slice(1, 3)) # None
print(a) # [1]
其中一些操作(例如setitem()
和delitem()
)修改了序列并且不返回值。
原地操作符
除了标准运算符之外,许多类型的对象还支持通过特殊运算符进行“原地”修改 ,+=
同样具有就地修改的功能:
from operator import *
a = -1
b = 5.0
c = [1, 2, 3]
d = ['a', 'b', 'c']
a = iadd(a, b)
print('a = iadd(a, b) =>', a) # a = iadd(a, b) => 4.0
c = iconcat(c, d)
print('c = iconcat(c, d) =>', c) # c = iconcat(c, d) => [1, 2, 3, 'a', 'b', 'c']
属性和元素的获取方法
operator 模块最特别的特性之一就是获取方法的概念,获取方法是运行时构造的一些可回调对象,用来获取对象的属性或序列的内容,获取方法在处理迭代器或生成器序列的时候特别有用,它们引入的开销会大大降低 lambda 或 Python 函数的开销。
from operator import *
class MyObj:
"""example class for attrgetter"""
def __init__(self, arg):
super().__init__()
self.arg = arg
def __repr__(self):
return 'MyObj({})'.format(self.arg)
l = [MyObj(i) for i in range(5)]
print(l) # [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)]
# Extract the 'arg' value from each object
g = attrgetter('arg')
vals = [g(i) for i in l]
print('arg values:', vals) # arg values: [0, 1, 2, 3, 4]
# Sort using arg
l.reverse()
print(l) # [MyObj(4), MyObj(3), MyObj(2), MyObj(1), MyObj(0)]
print(sorted(l, key=g)) # [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)]
结合操作符和定制类
operator
模块中的函数通过标准 Python 接口进行操作,因此它可以使用用户定义的类以及内置类型。
from operator import *
class MyObj:
"""Example for operator overloading"""
def __init__(self, val):
super(MyObj, self).__init__()
self.val = val
def __str__(self):
return 'MyObj({})'.format(self.val)
def __lt__(self, other):
"""compare for less-than"""
print('Testing {} < {}'.format(self, other))
return self.val < other.val
def __add__(self, other):
"""add values"""
print('Adding {} + {}'.format(self, other))
return MyObj(self.val + other.val)
a = MyObj(1)
b = MyObj(2)
print('Comparison:')
print(lt(a, b))
# Comparison:
# Testing MyObj(1) < MyObj(2)
# True
print('\nArithmetic:')
print(add(a, b))
# Arithmetic:
# Adding MyObj(1) + MyObj(2)
# MyObj(3)
类型检查
operator 模块还包含一些函数用来测试映射、数字和序列类型的 API 兼容性。
from operator import *
class NoType(object):
pass
class MultiType(object):
def __len__(self):
return 0
def __getitem__(self, name):
return "mapping"
def __int__(self):
return 0
o = NoType()
t = MultiType()
for func in [isMappingType, isNumberType, isSequenceType]:
print "%s(o):" % func.__name__, func(o)
print "%s(t):" % func.__name__, func(t)
# isMappingType(o): False
# isMappingType(t): True
# isNumberType(o): False
# isNumberType(t): True
# isSequenceType(o): False
# isSequenceType(t): True
获取对象方法
使用 methodcaller 可以获取对象的方法。
from operator import methodcaller
class Student(object):
def __init__(self, name):
self.name = name
def getName(self):
return self.name
stu = Student("Jim")
func = methodcaller('getName')
print func(stu) # 输出Jim
还可以给方法传递参数:
f = methodcaller('name', 'foo', bar=1)
f(b) # return b.name('foo', bar=1)
methodcaller方法等价于下面这个函数:
def methodcaller(name, *args, **kwargs):
def caller(obj):
return getattr(obj, name)(*args, **kwargs)
return caller
相关文档:
https://pymotw.com/3/operator/index.html