数据库使用相关

1.es ES因搜索而生,主要工作就是处理查询,返回结果

https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html    es 官网学习文档

开发要表结构文件。看层级和type 下面会使用

mappings 中的数据都支持查询关键字。

http://{ip}:{esport}/{index}

POST http://elasticsearch-explorer.test-b-okex.svc.test.local:9200/okb_block/_delete_by_query

{ "query": {"match_all": {} } }

POSThttp://elasticsearch-explorer.test-b-okex.svc.test.local:9200/okb_block_index/_delete_by_query

{ "query": {"match_all": {} } }

POSThttp://elasticsearch-explorer.test-b-okex.svc.test.local:9200/okb_transaction/_delete_by_query

{ "query": {"match_all": {} } }

 GEThttp://elasticsearch-explorer.test-b-okex.svc.test.local:9200/okb_block_index/_search

GEThttp://elasticsearch-explorer.test-b-okex.svc.test.local:9200/okb_block/_search

GEThttp://elasticsearch-explorer.test-b-okex.svc.test.local:9200/okb_transaction/_search

查询

http://elasticsearch-explorer.test-a-oklink.svc.test.local:9200/okb_block_index/block_index/{block}

http://elasticsearch-explorer.test-a-oklink.svc.test.local:9200/okb_block/block/{has}

http://elasticsearch-explorer.test-a-oklink.svc.test.local:9200/okb_transaction/transaction/{has}

查询某个区块内的交易,和从。。到。。区块的 产生的交易

http://elasticsearch-explorer.test-a-oklink.svc.test.local:9200/okb_block/block/_search

根据表结构查询

ES提供了基于JSON的query DSL查询语言,有两种类型子句:

1. Leaf query。查找特定字段的特定值。如match、term、range查询。

2. Compound query。wrap other leaf or compound queries。以一种含有逻辑(如bool、dis_max查询)的方式组合多个查询,或改变查询行为(如constant_score查询)

原文:https://blog.csdn.net/feifantiyan/article/details/53995772

posthttp://elasticsearch-explorer.test-a-oklink.svc.test.local:9200/okb_transaction/_search

{"query":{"match":{"block_height": "4780"}}}

{"query":{"range": {"block_height":{"gte": 10,"lte": 20000}}}}

{"query":{"match":{"transaction_data.type": "cosmos-sdk/MsgSubmitProposal"}}}

{"query":{"terms":{"transaction_data.type":["cosmos-sdk/MsgSubmitProposal","okdex/MsgDexListSubmitProposal"]}}}  

{"query":{"bool":{"filter":{"terms":{"transaction_data.type":["cosmos-sdk/MsgSubmitProposal","okdex/MsgDexListSubmitProposal"]}},"must_not":{"match":{"status":"SUCCESS"}}}}}

{"query":{"bool":{"filter":{"terms":{"transaction_data.type":["cosmos-sdk/MsgSubmitProposal","okdex/MsgDexListSubmitProposal"]}},"must":{"match":{"status":"SUCCESS"}}}}}

查询1000条数据,按照块高降序排列

{"query":{"bool":{}},"sort":[{"block_height":{"order":"desc"}}],"size":10000}

term 是精确匹配,上面两个交易类型是or 关系。只要精确匹配一个就会被选出

{"query":{"bool":{"filter":{"match":{"transaction_data.type":"cosmos-sdk/MsgSubmitProposal"}},"must_not":{"match":{"status":"SUCCESS"}}}}}

filter 选中符合条件的   mustnot  不符合后面条件的。  match/range/term 都可做后面条件

https://www.jianshu.com/p/d5583dff4157

因为match进行搜索的时候,会先进行分词拆分,拆完后,再来匹配,上面两个内容,他们title的词条为: love china hubei ,我们搜索的为love China 我们进行分词处理得到为love china ,并且属于或的关系,只要任何一个词条在里面就能匹配到。会按照空格拆分。

match_phrase 称为短语搜索,要求所有的分词必须同时出现在文档中,同时位置必须紧邻一致。

先看看term的定义,term是代表完全匹配,也就是精确查询,搜索前不会再对搜索词进行分词拆解。但是我只想精确匹配 love China这个,按照下面的写法不能查出来。term属于精确匹配,只能查单个词。我想用term匹配多个词怎么做?

可以使用terms来,terms里的[ ] 多个是或者的关系,只要满足其中一个词就可以。想要通知满足两个词的话,就得使用bool的must来做

{"query":{"bool":{"must":[{"terms":{"transaction_data.type":["cosmos-sdk/MsgSubmitProposal","okdex/MsgDexListSubmitProposal"]}},{"match":{"status":"SUCCESS"}}]}}}

es查询默认返回的是所有数据,使用_source可以指定返回指定字段的数据

{"query":{"range": {"last_transaction_time": {"gt":1565658000000 ,"lte": 1565661600000 }}},"_source": ["account_number", "balance"]}

前面查询条件,返回符合条件的所有数据。添加_source 指定只返回balance数据,如下

{

        "_index": "ltc_address_1",

        "_type": "address",

        "_id": "LeQTsnAm3e5WHQrApx3wBr8JpKUgdyRwfh",

        "_score": 1,

        "_source": {

          "balance": 0.7635146        }

统计求和。查找后按照fee 求和 sum_count这个位置可以随意自定义。

{"query":{"bool":{"filter":[{"range":{"blocktime":{"gt":1565776767,"lt":1565863167}}}]}},"size":0,"aggs":{"sum_count":{"sum":{"field":"fee"}}}}

结果返回

"hits": {

    "total": 6869,

    "max_score": 0,

    "hits": []

  },

  "aggregations": {

    "sum_count": {

      "value": 468148092    }

  }

}

Elasticsearch--Aggregation详细总结(聚合统计)

https://blog.csdn.net/donghaixiaolongwang/article/details/58597058

{"query":{"bool":{"filter":[{"range":{"blocktime":{"gt":1566976950,"lt":1567063350}}}]}},"size":0,"aggs":{"sum_transfer":{"sum":{"field":"real_transfer_value_sat"}},"sum_fee":{"sum":{"field":"fee"}}}}

{"query":{"bool":{}},"sort":[{"height":{"order":"desc"}}],"size":1008,"aggs":{"max_blocktime":{"max":{"field":"blocktime"}},"min_blocktime":{"min":{"field":"blocktime"}}}}

计数和去重统计

{"query":{"bool":{"filter":[{"range":{"blocktime":{"gt":${yes},"lte":${now}}}}]}},"size":0,"aggs":{"block_count":{"value_count":{"field":"height"}},"minpool_count": {"cardinality": { "field": "guessed_miner"}}}}

去重统计默认显示前十,添加size 如下显示前20个

{"query":{"bool":{"filter":[{"range":{"blocktime":{"gt":1567494812,"lte":1567581212}}}]}},"size":0,"aggs":{"block_count":{"value_count":{"field":"height"}},"minpool_count":{"cardinality":{"field":"guessed_miner"}},"group":{"terms":{"field":"guessed_miner","size":20}}}}

设置权重boost

{"query":{"bool":{"must":[{"range":{"real_transfer_value":{"from":500,"to":null,"include_lower":true,"include_upper":true,"boost":1.0}}},{"range":{"blocktime":{"from":1563707220,"to":1563793620,"include_lower":true,"include_upper":true,"boost":1.0}}}],"adjust_pure_negative":true,"boost":1.0}}}



2.redis

桌面图形化工具 Another Redis DeskTop Manager

redis-explorer.test-a-oklink.svc.test.local  6379 

删除数据

cd /usr/local/redis-5.0.5/src/

./redis-cli -hredis-explorer.test-a-oklink.svc.test.local  keys "*"| xargs ./redis-cli -hredis-explorer.test-a-oklink.svc.test.local del

redis-cli -hredis-explorer.test-b-okex.svc.test.local keys "*"| xargs redis-cli -hredis-explorer.test-b-okex.svc.test.local del

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容