证书、CA、证书信任链

TLS

传输层安全性协定 TLS(Transport Layer Security),及其前身安全套接层 SSL(Secure Sockets Layer)是一种安全协议,目的是为网际网路通信,提供安全及数据完整性保障。

image

如图,TLS 在建立连接时是需要

  1. 客户端发送 ClientHello(包含支持的协议版本、加密算法和 随机数A (Client random))到服务端
  2. 服务端返回 ServerHello、公钥、证书、随机数B (Server random) 到客户端
  3. 客户端使用CA证书验证返回证书无误后。生成 随机数C (Premaster secret),用公钥对其加密,发送到服务端
  4. 服务端用 私钥 解密得到 随机数C (Premaster secret),随后根据已经得到的 随机数ABC生成对称密钥(hello的时候确定的加密算法),并对需要发送的数据进行对称加密发送
  5. 客户端使用对称密钥(客户端也用随机数ABC生成对称密钥)对数据进行解密。
  6. 双方手持对称密钥 使用对称加密算法通讯

而这一流程 服务端的证书 是是至关重要的。

证书

证书用来证明公钥拥有者身份的凭证

首先我们需要知道 证书是怎么来的。

数字证书一般由数字证书认证机构签发,需要

  • 申请者通过非对称加密算法(RSA) 生成一对公钥密钥,然后把需要的申请信息(国家,域名等)连同公钥发送给 证书认证机构(CA)
  • CA构确认无误后通过消息摘要算法(MD5,SHA) 生成整个申请信息的摘要签名M, 然后 把 签名M和使用的摘要算法CA自己的私钥 进行加密

证书包含了

  • 公钥
  • 证书拥有者身份信息
  • 数字证书认证机构(发行者)信息
  • 发行者对这份文件的数字签名及使用的算法
  • 有效期

证书的格式和验证方法普遍遵循X.509 国际标准。

image

证书认证机构(CA)

数字证书认证机构(英语:Certificate Authority,缩写为CA),也称为电子商务认证中心、电子商务认证授权机构,是负责发放和管理数字证书的权威机构,并作为电子商务交易中受信任的第三方,承担公钥体系中公钥的合法性检验的责任。

其实任何个体/组织都可以成为CA(自签证书),但是你发发布的证书客户端是不信任的,也是就前文提及的需要权威。比如 Symantec、Comodo、Godaddy、Digicert

客户端信任这些CA,就会在其本地保持这些CA的 根证书root certificate),根证书是CA自己的证书,是证书验证链的开头。
根证书没有机构(已经是权威了)再为其做数字签名,所以都是自签证书。

CA会通过 中介证书(intermediate-certificate) 替代根证书的去做服务器端的证书签名,确保根证书密钥绝对不可访问。

Godaddy 给出了解释
What is an intermediate certificate?

证书信任链

前文提到,在向CA 申请证书时是需要 CA的私钥 去对整个证书的签名摘要做非对称加密的,也就是证书是可以通过 CA的公钥 去解密得到证书的签名摘要的。
当我们再次用 相同的摘要算法(证书里面有保存所使用的算法)对整个证书做签名,如果得到的签名和证书上的签名是一致的,说明这个证书是可信任的。

同理,中介证书 也是可以被这样的方式证明其可信任。这样的一整个流程称为 信任链(Chain of trust)。

就是我绝对相信你(A>B);你绝对相信他(B>C);等于我绝对相信他(A>C)。

以下是整个流程:

信任链.gif
  1. 客户端得到服务端返回的证书,通过读取得到 服务端证书的发布机构(Issuer)
  2. 客户端去操作系统查找这个发布机构的的证书,如果是不是根证书就继续递归下去 直到拿到根证书
  3. 根证书的公钥解密验证 上一层证书的合法性,再拿上一层证书的公钥去验证更上层证书的合法性;递归回溯。
  4. 最后验证服务器端的证书是 可信任 的。

Reference

https://www.wikiwand.com/zh/根证书
https://www.wikiwand.com/zh-hans/信任鏈
https://www.wikiwand.com/zh-hans/证书颁发机构
http://www.cnblogs.com/JeffreySun/archive/2010/06/24/1627247.html
http://www.ruanyifeng.com/blog/2011/08/what_is_a_digital_signature.html

更多

获取优秀工具,请关注微信公众号获取

wx_rec.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,311评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,339评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,671评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,252评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,253评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,031评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,340评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,973评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,466评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,937评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,039评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,701评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,254评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,259评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,497评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,786评论 2 345

推荐阅读更多精彩内容

  • 数字证书原理 - 无恙 - 博客园 文中首先解释了加密解密的一些基础知识和概念,然后通过一个加密通信过程的例子说明...
    拉肚阅读 1,657评论 0 3
  • 本文转载,出处如下:数字证书原理 文中首先解释了加密解密的一些基础知识和概念,然后通过一个加密通信过程的例子说明了...
    随安居士阅读 1,673评论 1 8
  • 文中首先解释了加密解密的一些基础知识和概念,然后通过一个加密通信过程的例子说明了加密算法的作用,以及数字证书的出现...
    纳兰三少阅读 1,901评论 1 6
  • 兰花,想必是为大多数人所熟识的,它与“梅,竹,菊”并列,合称“四君子”,它的种类繁多,花形各异。兰,没有醒目的艳...
    大嘴巴蜗牛阅读 394评论 0 1
  • / 根目录 比如像C盘D盘E盘等等。./ 当前目录../ 父级目录
    paulihs阅读 177评论 0 0