pandas学习(二)——dataframe数据的选取

本章主要利用双色球开奖数据来学习pandas的DataFrame数据选取,Series的统计功能,以及matplotlib画柱状图。

# -*- coding: utf-8 -*-
import pandas as pd
import numpy  as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

# 读取数据
data_sheet = 'ssqexcle_result.xls'
all_data = pd.read_excel(data_sheet, parse_cols=(0, 2, 3, 4, 5, 6, 7, 8))
all_data['index'] = all_data['index'].astype(np.str)

# 输入期数,获取历史数据,本例获取历年的079期数据
history_data = all_data[[x.endswith('079') for x in all_data['index']]].copy()
history_red_ball = history_data.iloc[:, 1:6]
history_blue_ball = history_data.iloc[:, 7]

# 统计红球和篮球的出现次数
count_red_ball = history_red_ball.stack().value_counts()
count_blue_ball = history_blue_ball.value_counts()

# 画图
plt.figure(1)
count_red_ball.plot(kind='bar', align='center')
plt.xlabel("红球数字")
plt.ylabel("次数")
plt.show()

plt.figure(2)
count_blue_ball.plot(kind='bar', align='center')
plt.xlabel("蓝球数字")
plt.ylabel("次数")
plt.show()

获取出来的历史数据如下所示:

        index  red1  red2  red3  red4  red5  red6 blue
20    2017079     3     7    14    23    25    27   08
173   2016079     1     3    10    12    24    28   02
327   2015079     9    14    15    20    26    32   11
479   2014079     2     7    16    22    27    28   02
633   2013079     7    13    17    19    22    26   13
787   2012079     6     7    12    24    30    33   12
940   2011079     3    14    15    16    24    29   05
1093  2010079     8    11    12    14    18    22   02
1247  2009079     2     9    16    21    30    31   13
1401  2008079     3     4     5    10    20    32   09
1554  2007079     3     4    14    20    21    25   14
1708  2006079     6    11    13    17    20    32   08
1861  2005079     3     9    20    24    25    28   05
1983  2004079     7    13    14    17    19    30   03
2072  2003079    12    15    22    23    26    31   04

画出来的 图如下所示:
1、红球历史数据次数统计图

20170827211827424.png

2、蓝球历史数据次数统计图

20170827211843209.png

数据以及代码下载地址:链接:http://pan.baidu.com/s/1c1OdNs0 密码:87k6

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容