Python 垃圾回收机制是使用什么算法?

    对于python、java等面向对象的语言来说,一切皆为对象,所有的变量赋值都遵循着对象引用机制。程序在运行的时候,需要在内存中开辟出一块空间,用于存放运行时产生的临时变量;计算完成后,再将结果输出到永久性存储器中。如果数据量过大,内存空间管理不善就很容易出现 OOM(out of memory),即内存溢出,系统已经不能再分配出你所需要的空间,比如你需要100M的空间,系统只剩90M了,就会报错,程序可能被操作系统中止。

    而对于服务器,内存管理则显得更为重要,不然很容易引发内存泄漏 (Memory Leak),强引用所指向的对象不会被回收,可能导致内存泄漏,虚拟机宁愿抛出OOM也不会去回收他指向的对象。

    这里的泄漏,并不是说你的内存出现了信息安全问题,被恶意程序利用了,而是指程序本身没有设计好,导致程序未能释放已不再使用的内存。-内存泄漏也不是指你的内存在物理上消失了,而是意味着代码在分配了某段内存后,因为设计错误,失去了对这段内存的控制,从而造成了内存的浪费。也就是说这块内存存在没有被回收的问题。

    python的GC回收算法主要使用以下两种:

计数引用

    因为python中一切皆为对象,你所看到的一切变量,本质上都是对象的一个指针。

    当一个对象不再调用的时候,也就是当这个对象的引用计数(指针数)为 0 的时候,说明这个对象永不可达,自然它也就成为了垃圾,需要被回收。可以简单的理解为没有任何变量再指向它。如下这例子:

import os

import psutil

# 显示当前 python 程序占用的内存大小

def show_memory_info(hint):

    pid = os.getpid()

    p = psutil.Process(pid)

    info = p.memory_full_info()

    memory = info.uss / 1024. / 1024

    print('{} memory used: {} MB'.format(hint, memory))

def func():

    show_memory_info('initial')

    a = [i for i in range(10000000)]

    show_memory_info('after a created')

func()

show_memory_info('finished')

########## 输出 ##########

initial memory used: 47.19140625 MB

after a created memory used: 433.91015625 MB

finished memory used: 48.109375 MB

    可以看到调用函数 func(),在列表 a 被创建之后,内存占用迅速增加到了 433 MB:而在函数调用结束后,内存则返回正常。这是因为,函数内部声明的列表 a 是局部变量,在函数返回后,局部变量的引用会注销掉;此时,列表 a 所指代对象的引用数为 0,Python 便会执行垃圾回收,因此之前占用的大量内存就又回来了。

def func():

    show_memory_info('initial')

    global a

    a = [i for i in range(10000000)]

    show_memory_info('after a created')

func()

show_memory_info('finished')

########## 输出 ##########

initial memory used: 48.88671875 MB

after a created memory used: 433.94921875 MB

finished memory used: 433.94921875 MB

    新的这段代码中,global a 表示将 a 声明为全局变量。那么,即使函数返回后,列表的引用依然存在,于是对象就不会被垃圾回收掉,依然占用大量内存。同样,如果我们把生成的列表返回,然后在主程序中接收,那么引用依然存在,垃圾回收就不会被触发,大量内存仍然被占用着:

def func():

    show_memory_info('initial')

    a = [i for i in derange(10000000)]

    show_memory_info('after a created')

    return a

a = func()

show_memory_info('finished')

########## 输出 ##########

initial memory used: 47.96484375 MB

after a created memory used: 434.515625 MB

finished memory used: 434.515625 MB

    那我们怎么可以看到变量被引用了多少次呢?可以通过sys.getrefcount查看

import sys

a = []

# 两次引用,一次来自 a,一次来自 getrefcount

print(sys.getrefcount(a))

def func(a):

    # 四次引用,a,python 的函数调用栈,函数参数,和 getrefcount

    print(sys.getrefcount(a))

func(a)

# 两次引用,一次来自 a,一次来自 getrefcount,函数 func 调用已经不存在

print(sys.getrefcount(a))

########## 输出 ##########

2

4

2

    如果其中涉及函数调用,会额外增加两次 1. 函数栈 2. 函数调用

    从这里就可以看到python不再需要像C那种的认为的释放内存,但是python同样给我们提供了手动释放内存的方法gc.collect()

import gc

show_memory_info('initial')

a = [i for i in range(10000000)]

show_memory_info('after a created')

del a

gc.collect()

show_memory_info('finish')

print(a)

########## 输出 ##########

initial memory used: 48.1015625 MB

after a created memory used: 434.3828125 MB

finish memory used: 48.33203125 MB

---------------------------------------------------------------------------

NameError                                Traceback (most recent call last)

<ipython-input-12-153e15063d8a> in <module>

    11

    12 show_memory_info('finish')

---> 13 print(a)

NameError: name 'a' is not defined

    截止目前,貌似python的垃圾回收机制非常的简单,只要对象引用次数为0,必定为触发gc,那么引用次数为0是否是触发gc的充要条件呢?

循环回收

    如果有两个对象,它们互相引用,并且不再被别的对象所引用,那么它们应该被垃圾回收吗?

def func():

    show_memory_info('initial')

    a = [i for i in range(10000000)]

    b = [i for i in range(10000000)]

    show_memory_info('after a, b created')

    a.append(b)

    b.append(a)

func()

show_memory_info('finished')

########## 输出 ##########

initial memory used: 47.984375 MB

after a, b created memory used: 822.73828125 MB

finished memory used: 821.73046875 MB

    从结果显而易见,它们并没有被回收,但是从程序上来看,当这个函数结束的时候,作为局部变量的a,b就已经从程序意义上不存在了。但是因为它们的互相引用,导致了它们的引用数都不为0。

    这时要如何规避呢 1. 从代码逻辑上进行整改,避免这种循环引用 2. 通过人工回收

import gc

def func():

    show_memory_info('initial')

    a = [i for i in range(10000000)]

    b = [i for i in range(10000000)]

    show_memory_info('after a, b created')

    a.append(b)

    b.append(a)

func()

gc.collect()

show_memory_info('finished')

########## 输出 ##########

initial memory used: 49.51171875 MB

after a, b created memory used: 824.1328125 MB

finished memory used: 49.98046875 MB

    python针对循环引用,有它的自动垃圾回收算法 1. 标记清除(mark-sweep)算法 2. 分代收集(generational)。

标记清除

    标记清除的步骤总结为如下步骤 1. GC会把所有的『活动对象』打上标记 2. 把那些没有标记的对象『非活动对象』进行回收

    那么python如何判断何为非活动对象?

    通过用图论来理解不可达的概念。对于一个有向图,如果从一个节点出发进行遍历,并标记其经过的所有节点;那么,在遍历结束后,所有没有被标记的节点,我们就称之为不可达节点。显而易见,这些节点的存在是没有任何意义的,自然的,我们就需要对它们进行垃圾回收。

    但是每次都遍历全图,对于 Python 而言是一种巨大的性能浪费。所以,在 Python 的垃圾回收实现中,mark-sweep 使用双向链表维护了一个数据结构,并且只考虑容器类的对象(只有容器类对象,list、dict、tuple,instance,才有可能产生循环引用)。


标记清除

    图中把小黑圈视为全局变量,也就是把它作为root object,从小黑圈出发,对象1可直达,那么它将被标记,对象2、3可间接到达也会被标记,而4和5不可达,那么1、2、3就是活动对象,4和5是非活动对象会被GC回收。

分代回收

    分代回收是一种以空间换时间的操作方式,Python将内存根据对象的存活时间划分为不同的集合,每个集合称为一个代,Python将内存分为了3“代”,分别为年轻代(第0代)、中年代(第1代)、老年代(第2代),他们对应的是3个链表,它们的垃圾收集频率与对象的存活时间的增大而减小。新创建的对象都会分配在年轻代,年轻代链表的总数达到上限时(当垃圾回收器中新增对象减去删除对象达到相应的阈值时),Python垃圾收集机制就会被触发,把那些可以被回收的对象回收掉,而那些不会回收的对象就会被移到中年代去,依此类推,老年代中的对象是存活时间最久的对象,甚至是存活于整个系统的生命周期内。同时,分代回收是建立在标记清除技术基础之上。

    事实上,分代回收基于的思想是,新生的对象更有可能被垃圾回收,而存活更久的对象也有更高的概率继续存活。因此,通过这种做法,可以节约不少计算量,从而提高 Python 的性能。

    所以对于刚刚的问题,引用计数只是触发gc的一个充分非必要条件,循环引用同样也会触发。

调试

    可以使用 objgraph来调试程序,因为目前它的官方文档,还没有细读,只能把文档放在这供大家参阅啦~其中两个函数非常有用 

1. show_refs() 

2. show_backrefs()

总结

    1、垃圾回收是 Python 自带的机制,用于自动释放不会再用到的内存空间;

    2、引用计数是其中最简单的实现,不过切记,这只是充分非必要条件,因为循环引用需要通过不可达判定,来确定是否可以回收;

    3、Python 的自动回收算法包括标记清除和分代回收,主要针对的是循环引用的垃圾收集;

    4、调试内存泄漏方面, objgraph 是很好的可视化分析工具。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容