概述
如何利用Python的来实现具有一个隐藏层的平面数据分类问题。前文,创建的神经网络只有一个输出层,没有隐藏层。本文将创建单隐藏层的神经网络模型。
- 二分类单隐藏层的神经网络
- 神经元节点采用非线性的激活函数,如tanh
- 计算交叉损失函数
- 运用前向和后向传播
准备
numpy:Python科学计算中最重要的库
sklearn:提供了一些简单而有效的工具用于数据挖掘和数据分析。
mathplotlib:Python画图的库
testCases:自定义文件,封装了一些用于测试样本,用于评估算法的有效性。
planar_utils:自定义文件,封装了一些作用用到的相关函数。
# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases_v2 import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
%matplotlib inline
np.random.seed(1) # set a seed so that the results are consistent
数据集
下述代码将加载一个二分类的数据集并进行可视化:
X, Y = load_planar_dataset()
# Visualize the data:
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);
绘制出的图像像是一朵花,对于y=0时,显示为红色的点;而当y=1时,显示的是蓝色的点。我们的目的是希望建立一个模型可以将两种颜色的点区分开。
其中X是一个矩阵,包含着数据的特征信息(x1,x2)
Y是一个向量,包含这数据对应的标记结果,其中(red:0,blue:1)
尺寸信息:
### START CODE HERE ### (≈ 3 lines of code)
shape_X = X.shape
shape_Y = Y.shape
m = shape_X[1] # training set size
### END CODE HERE ###
print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))
运行结果可以得到X的维度为2400,Y的维度为1400,训练样本的数量为400。
简单的逻辑回归
在建立一个神经网络之前,先用逻辑回归算法来解决一下该问题。可以直接使用sklearn的内置函数来完成。
# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T);
然后绘制模型边界。
# Plot the decision boundary for logistic regression
plot_decision_boundary(lambda x: clf.predict(x), X, Y)
plt.title("Logistic Regression")
# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
'% ' + "(percentage of correctly labelled datapoints)")
结果为:
Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)
得到的模型分割图:[图片上传失败...(image-6aab6c-1516700004743)]
显然,数据集是非线性的,因此逻辑回归结果不好。
神经网络模型
神经网络的模型如下:[图片上传失败...(image-16cc4c-1516700004743)]
数学角度上,对于每个训练样本x(i),有:[图片上传失败...(image-a6132b-1516700004743)][图片上传失败...(image-9cfd50-1516700004743)]
注意: 建立神经网络的一般方法如下:
- 定义神经网络的结构 ( 输入单元数量, 隐藏层单元数量等等).
- 初始化模型的参数
- 迭代循环:
- 前向传播
- 计算损失函数
- 后向传播,计算梯度
- 更新参数 (梯度下降)
一般习惯将上述1-3步分别定义成一个独立的函数,再通过模型函数将三者融合一起。在建立模型之后,迭代获取到参数之后,即可对新数据进行预测。
定义神经网络结构
给定如下变量:n_x:输入层神经元的数目
n_h:隐藏层神经元的数目
n_y:输出层神经元的数目
此处,我们需要根据X和Y来确定n_x和n_y,另外n_h设置为4。
# GRADED FUNCTION: layer_sizes
def layer_sizes(X, Y):
"""
Arguments:
X -- input dataset of shape (input size, number of examples)
Y -- labels of shape (output size, number of examples)
Returns:
n_x -- the size of the input layer
n_h -- the size of the hidden layer
n_y -- the size of the output layer
"""
### START CODE HERE ### (≈ 3 lines of code)
n_x = X.shape[0] # size of input layer
n_h = 4
n_y = Y.shape[0] # size of output layer
### END CODE HERE ###
return (n_x, n_h, n_y)
模型参数初始化
在定义参数的时候,对于权重矩阵我们进行随机初始化:np.random.randn(a,b) * 0.01 以获取一个尺寸为(a,b)的随机矩阵。 对于参数b,我们直接初始化为0,np.zeros((a,b))
# GRADED FUNCTION: initialize_parameters
def initialize_parameters(n_x, n_h, n_y):
"""
Argument:
n_x -- size of the input layer
n_h -- size of the hidden layer
n_y -- size of the output layer
Returns:
params -- python dictionary containing your parameters:
W1 -- weight matrix of shape (n_h, n_x)
b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (n_y, n_h)
b2 -- bias vector of shape (n_y, 1)
"""
np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
### START CODE HERE ### (≈ 4 lines of code)
W1 = np.random.randn(n_h,n_x)*0.01
b1 = np.zeros((n_h,1))*0.01
W2 = np.random.randn(n_y,n_h)*0.01
b2 = np.zeros((n_y,1))*0.01
### END CODE HERE ###
assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
循环
首先是前向传播。
为前向传播定义一个函数,在隐藏层的激活函数是tanh,在输出层的激活函数是sigmoid。利用初始化的参数计算Z[1],A[1],Z[2] 和 A[2],同时注意保留值到cache,因为在后续的后向传播需要用到。
前向传播代码:
# GRADED FUNCTION: forward_propagation
def forward_propagation(X, parameters):
"""
Argument:
X -- input data of size (n_x, m)
parameters -- python dictionary containing your parameters (output of initialization function)
Returns:
A2 -- The sigmoid output of the second activation
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
"""
# Retrieve each parameter from the dictionary "parameters"
### START CODE HERE ### (≈ 4 lines of code)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
### END CODE HERE ###
# Implement Forward Propagation to calculate A2 (probabilities)
### START CODE HERE ### (≈ 4 lines of code)
Z1 = np.dot(W1,X)+b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2,A1)+b2
A2 = sigmoid(Z2)
### END CODE HERE ###
assert(A2.shape == (1, X.shape[1]))
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return A2, cache
代价函数
# GRADED FUNCTION: compute_cost
def compute_cost(A2, Y, parameters):
"""
Computes the cross-entropy cost given in equation (13)
Arguments:
A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
parameters -- python dictionary containing your parameters W1, b1, W2 and b2
Returns:
cost -- cross-entropy cost given equation (13)
"""
m = Y.shape[1] # number of example
# Compute the cross-entropy cost
### START CODE HERE ### (≈ 2 lines of code)
logprobs = np.multiply(np.log(A2),Y) + np.multiply(np.log(1-A2),(1-Y))
cost = - np.sum(logprobs)/m
### END CODE HERE ###
cost = np.squeeze(cost) # makes sure cost is the dimension we expect.
# E.g., turns [[17]] into 17
assert(isinstance(cost, float))
return cost
反向传播
公式如下:[图片上传失败...(image-aa5101-1516700004743)]
- 注意 ∗ 表示元素之间的乘积。
- 在计算dZ1时候,我们需要先计算 g[1]′(Z[1])。这是由于 g[1](.) is的激活函数是tanh,当a=g1则g[1]′(z)=1−a2。为此,我们可以用(1 - np.power(A1, 2))来计算g[1]′(Z[1])
# GRADED FUNCTION: backward_propagation
def backward_propagation(parameters, cache, X, Y):
"""
Implement the backward propagation using the instructions above.
Arguments:
parameters -- python dictionary containing our parameters
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
X -- input data of shape (2, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
Returns:
grads -- python dictionary containing your gradients with respect to different parameters
"""
m = X.shape[1]
# First, retrieve W1 and W2 from the dictionary "parameters".
### START CODE HERE ### (≈ 2 lines of code)
W1 = parameters["W1"]
W2 = parameters["W2"]
### END CODE HERE ###
# Retrieve also A1 and A2 from dictionary "cache".
### START CODE HERE ### (≈ 2 lines of code)
A1 = cache["A1"]
A2 = cache["A2"]
### END CODE HERE ###
# Backward propagation: calculate dW1, db1, dW2, db2.
### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
dZ2 = A2-Y
dW2 = 1/m*np.dot(dZ2,A1.T)
db2 = 1/m*np.sum(dZ2,axis=1,keepdims=True)
dZ1 = np.multiply(np.dot(W2.T,dZ2),(1-np.power(A1,2)))
dW1 = 1/m*np.dot(dZ1,X.T)
db1 = 1/m*np.sum(dZ1,axis=1,keepdims=True)
### END CODE HERE ###
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
参数更新
上述的结果我们已经可以计算出反向传播的梯度了,那么我们就可以通过梯度下降法对参数进行更新: [图片上传失败...(image-ff7944-1516700004743)]其中 α 是学习率 θ 则是代表待更新的参数。
选择好的学习率,迭代才会收敛,否则迭代过程不断振荡,呈发散状态。
[图片上传失败...(image-b2a3c1-1516700004743)]
# GRADED FUNCTION: update_parameters
def update_parameters(parameters, grads, learning_rate = 1.2):
"""
Updates parameters using the gradient descent update rule given above
Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients
Returns:
parameters -- python dictionary containing your updated parameters
"""
# Retrieve each parameter from the dictionary "parameters"
### START CODE HERE ### (≈ 4 lines of code)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
### END CODE HERE ###
# Retrieve each gradient from the dictionary "grads"
### START CODE HERE ### (≈ 4 lines of code)
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
## END CODE HERE ###
# Update rule for each parameter
### START CODE HERE ### (≈ 4 lines of code)
W1 = W1 - learning_rate*dW1
b1 = b1 - learning_rate*db1
W2 = W2 - learning_rate*dW2
b2 = b2 - learning_rate*db2
### END CODE HERE ###
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
模型融合
# GRADED FUNCTION: nn_model
def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
"""
Arguments:
X -- dataset of shape (2, number of examples)
Y -- labels of shape (1, number of examples)
n_h -- size of the hidden layer
num_iterations -- Number of iterations in gradient descent loop
print_cost -- if True, print the cost every 1000 iterations
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""
np.random.seed(3)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
# Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
### START CODE HERE ### (≈ 5 lines of code)
parameters = initialize_parameters(n_x,n_h,n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
### END CODE HERE ###
# Loop (gradient descent)
for i in range(0, num_iterations):
### START CODE HERE ### (≈ 4 lines of code)
# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
A2, cache = forward_propagation(X,parameters)
# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
cost = compute_cost(A2, Y, parameters)
# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
grads = backward_propagation(parameters,cache,X,Y)
# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
parameters = update_parameters(parameters, grads)
### END CODE HERE ###
# Print the cost every 1000 iterations
if print_cost and i % 1000 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
return parameters
测试代码
def nn_model_test_case():
np.random.seed(1)
X_assess = np.random.randn(2, 3)
Y_assess = np.random.randn(1, 3)
return X_assess, Y_assess
X_assess, Y_assess = nn_model_test_case()
parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=True)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
结果
W1 = [[-4.18496401 5.33207212]
[-7.53803949 1.20755725]
[-4.19297213 5.32618291]
[ 7.53798193 -1.20759019]]
b1 = [[ 2.32932824]
[ 3.81001626]
[ 2.33008802]
[-3.81011657]]
W2 = [[-6033.82356872 -6008.14295996 -6033.08780035 6008.07953767]]
b2 = [[-52.67923024]]
预测
除了训练模型外,我们还需要使用我们的模型来进行预测。
通常,我们会设置一个阈值,当预测结果大于该阈值时,我们认为其为1,否则为0。0.5是一个很常用的阈值。
# GRADED FUNCTION: predict
def predict(parameters, X):
"""
Using the learned parameters, predicts a class for each example in X
Arguments:
parameters -- python dictionary containing your parameters
X -- input data of size (n_x, m)
Returns
predictions -- vector of predictions of our model (red: 0 / blue: 1)
"""
# Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
### START CODE HERE ### (≈ 2 lines of code)
A2, cache = forward_propagation(X, parameters)
predictions = (A2 > 0.5)
### END CODE HERE ###
return predictions
目前为止,已经实现了完整的神经网络模型和预测函数,接下来用数据集来训练。
# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
运行结果:
分类曲线如上图所示,接下来,使用预测函数计算一下我们模型的预测准确度:
# Print accuracy
predictions = predict(parameters, X)
print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
相比47%的逻辑回归预测率,使用含有一个隐藏层的神经网络预测的准确度可以达到90%。
调整隐藏层神经元数目观察结果
接下来,使用包含不同隐藏层神经元的模型来进行训练,以此来观察神经元数量度模型的影响。分别适用包含1,2,3,4,5,20,50个神经元的模型来进行训练:
# This may take about 2 minutes to run
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
for i, n_h in enumerate(hidden_layer_sizes):
plt.subplot(5, 2, i+1)
plt.title('Hidden Layer of size %d' % n_h)
parameters = nn_model(X, Y, n_h, num_iterations = 5000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
predictions = predict(parameters, X)
accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))
输出结果:
Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.5 %
Accuracy for 5 hidden units: 91.25 %
Accuracy for 10 hidden units: 90.25 %
Accuracy for 20 hidden units: 90.5 %
对比上述图像,可以发现:
1.隐藏层的神经元数量越多,则对训练数据集的拟合效果越好,直到最后出现过拟合。
2.本文中最好的神经元数目是n_h=5,此时,能够较好地拟合训练数据集,也不会出现过拟合现象。
3.对于n_h过大而产生的过拟合是可以通过正则化来消除的。