利用Python进行数据分析-读书笔记(1)

本书2017年10月20日出版,英文名为《Python for Data Analysis, 2nd Edition》,英文在线:pydata-book
中文在线:https://www.jianshu.com/p/a380222a3292
本系列读书笔记基本只是简略记下书中要点,引用图片包括大部分来自中文链接博客,少量自己用IPython运行截图;仅作为在遗忘时翻阅之用。

4.1 ndarry / 多维数组对象

主要内容:
%time 和 %timeit
np.random.randn 和 np.random.rand
不建议使用from numpy import *
arr.shape 表示维度大小的元祖
arr.dtype 数组数据类型
np.array(XXX) 创建ndarray对象,单序列→numpy数组,嵌套序列→多维数组
arr.ndim 数组arr维度值
一般np.array会尝试为新建的数组推断出一个合适的数据类型(dtype)
np.zeros(X) np.zeros((X,Y)) 下同 np.ones np.empty
np.empty大多数情况返回的是未初始化的垃圾值,而非全0
np.arange(X)
np.asarray(X)
np.ones_like(X) np.zeros_like(X) np.empty_like(X)
np.full np.full_like
np.eye(X) np.identity(X)
arr.astype(np.float64) 转换dtype 浮点数转换整数小数部分会被截取
astype也可以将数字字符串列表转换为数字列表,如
np.array(['1.25', '-9.6', '42'], dtype=np.string_) → array([ 1.25, -9.6 , 42. ])
维度相等的数组之间的任何算术运算都将应用到元素级
数组与标量运算会将标量值传播到各个元素
维度相等的数组之间的比较大小会生成布尔数组
切片
将一个标量值赋值给一个切片,该值会自动传播到整个选区
数组切片是原始数组的视图,视图上的任何改变都会直接反映到数组上
arr.copy() 创建一份数组arr的副本而非视图
axis = 0 对行处理
高维数组切片
布尔型索引
names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
data = np.random.randn(7, 4)
data[names == 'Bob', 2:]
data[~(names == 'Bob')]
and和or在布尔型数组中无效。要使用&与|
data[ (names == 'Bob') | (names == 'Will')]
data[data < 0] = 0 将data中负值设为0
二维数组arr花式索引
arr[[4, 3, 0, 6]]
arr[[-3, -5, -7]]
arr[[1, 5, 7, 2], [0, 3, 1, 2]] 返回一维数组,其中的元素对应各个索引元组
arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]] 返回矩阵子区域
arr[:,[3,1,2]] 返回三列
arr.T
np.dot(arr1, arr2)
高维数组,transpose需要得到一个由轴编号组成的元组才能对这些轴进行转置
arr.reshape(X,Y)
swapaxes方法,它需要接受一对轴编号

下一篇对个别方法和函数做稍微深入一些探究,包括:
待续……

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容