记字节前端面试一道简单的算法题
70. 爬楼梯 (medium)
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
方法1.动态规划
- 思路:因为每次可以爬 1 或 2 个台阶,所以到第n阶台阶可以从第n-2或n-1上来,其实就是斐波那契的dp方程
- 复杂度分析:时间复杂度
O(n)
,空间复杂度O(1)
Js:
var climbStairs = function (n) {
const memo = [];
memo[1] = 1;
memo[2] = 2;
for (let i = 3; i <= n; i++) {
memo[i] = memo[i - 2] + memo[i - 1];//所以到第n阶台阶可以从第n-2或n-1上来
}
return memo[n];
};
//状态压缩
var climbStairs = (n) => {
let prev = 1;
let cur = 1;
for (let i = 2; i < n + 1; i++) {
[prev, cur] = [cur, prev + cur]
// const temp = cur; // 暂存上一次的cur
// cur = prev + cur; // 当前的cur = 上上次cur + 上一次cur
// prev = temp; // prev 更新为 上一次的cur
}
return cur;
}
Java:
class Solution {
public int climbStairs(int n) {
int prev = 1, cur = 1;
for (int i = 2; i < n + 1; i++) {
int temp = cur;
cur = prev + cur;
prev = temp;
}
return cur;
}
}