GeekTime数据结构与算法之美( ఠൠఠ )ノ真心推荐极客时间
我们本科都学习过图的两种搜索算法,深度优先搜索和广度优先搜索。这两种算法主要是针对无权图的搜索算法。针对有权图,也就是图中的每条边都有一个权重,我们该如何计算两点之间的最短路径(经过的边的权重和最小)呢?今天,我就从地图软件的路线规划问题讲起,带你看看常用的最短路径算法。
像 Google 地图、百度地图、高德地图这样的地图软件,我想你应该经常使用吧?如果想从家开车到公司,你只需要输入起始、结束地址,地图就会给你规划一条最优出行路线。这里的最优,有很多种定义,比如最短路线、最少用时路线、最少红绿灯路线等等。作为一名软件开发工程师,你是否思考过,地图软件的最优路线是如何计算出来的吗?底层依赖了什么算法呢?
算法解析
- 解决软件开发中的实际问题,最重要的一点就是建模,也就是将复杂的场景抽象成具体的数据结构。针对这个问题,我们该如何抽象成数据结构呢?
- 我们之前也提到过,图这种数据结构的表达能力很强,显然,把地图抽象成图最合适不过了。我们把每个岔路口看作一个顶点,岔路口与岔路口之间的路看作一条边,路的长度就是边的权重。如果路是单行道,我们就在两个顶点之间画一条有向边;如果路是双行道,我们就在两个顶点之间画两条方向不同的边。这样,整个地图就被抽象成一个有向有权图。
- 于是,我们要求解的问题就转化为,在一个有向有权图中,求两个顶点间的最短路径。
public class Graph { // 有向有权图的邻接表表示
private LinkedList<Edge>[] adj; // 邻接表
private int v; // 顶点个数
public Graph(int v) {
this.v = v;
this.adj = new LinkedList[v];
for (int i = 0; i < v; ++i) {
this.adj[i] = new LinkedList<>();
}
}
public void addEdge(int s, int t, int w) { // 添加一条边
this.adj[s].add(new Edge(s, t, w));
}
private class Edge {
public int sid; // 边的起始顶点编号
public int tid; // 边的终止顶点编号
public int w; // 权重
public Edge(int sid, int tid, int w) {
this.sid = sid;
this.tid = tid;
this.w = w;
}
}
// 下面这个类是为了dijkstra实现用的
private class Vertex {
public int id; // 顶点编号ID
public int dist; // 从起始顶点到这个顶点的距离
public Vertex(int id, int dist) {
this.id = id;
this.dist = dist;
}
}
}
- 想要解决这个问题,有一个非常经典的算法,最短路径算法,更加准确地说,是单源最短路径算法(一个顶点到一个顶点)。提到最短路径算法,最出名的莫过于 Dijkstra 算法了。所以,我们现在来看,Dijkstra 算法是怎么工作的。
本人自己实现的优先队列
// 因为Java提供的优先级队列,没有暴露更新数据的接口,所以我们需要重新实现一个
private class PriorityQueue { // 根据vertex.dist构建小顶堆
private Vertex[] nodes;// 数组,从下标 1 开始存储数据
private int n;// 堆可以存储的最大数据个数
private int count;// 堆中已经存储的数据个数
public PriorityQueue(int v) {
this.nodes = new Vertex[v + 1];
this.n = v;
this.count = 0;
}
public Vertex poll() {
if (count == 0) return new Vertex(-1, 0);
Vertex del = nodes[1];
nodes[1] = nodes[count];
--count;
heapify(nodes, count, 1);
return del;
}
public void add(Vertex vertex) {
++count;
nodes[count] = vertex;
int i = count;
while ((i >> 1) > 0 && nodes[i].dist < nodes[i >> 1].dist) {// 自下往上堆化
swap(nodes, i, i >> 1);// swap() 函数作用:交换下标为 i 和 i / 2 的两个元素
i >>= 1;
}
}
private void heapify(Vertex[] a, int n, int i) {// 自上往下堆化
while (true) {
int minPos = i;
if ((i << 1) <= n && a[i].dist < a[i << 1].dist) minPos = (i << 1);
if ((i << 1) + 1 <= n && a[minPos].dist > a[(i << 1) + 1].dist) minPos = (i << 1) + 1;
if (minPos == i) break;
swap(a, i, minPos);
i = minPos;
}
}
private void swap(Vertex[] nodes, int l, int r) {
Vertex tmp = nodes[l];
nodes[l] = nodes[r];
nodes[r] = tmp;
}
// 更新结点的值,并且从下往上堆化,重新符合堆的定义。时间复杂度O(logn)。
public void update(Vertex vertex) {
for (int i = 1; i <= count; ++i) {
if (nodes[i].id == vertex.id) {
nodes[i].dist = vertex.dist;
}
}
heapify(nodes, count, 1);
}
public boolean isEmpty() {
return count == 0;
}
}
以下是原文算法
public static class Graph { // 有向有权图的邻接表表示
private final LinkedList<Edge>[] adj; // 邻接表
private final int v; // 顶点个数
public Graph(int v) {
this.v = v;
this.adj = new LinkedList[v];
for (int i = 0; i < v; ++i) {
this.adj[i] = new LinkedList<>();
}
}
public void addEdge(int s, int t, int w) { // 添加一条边
this.adj[s].add(new Edge(s, t, w));
}
private static class Edge {
public int sid; // 边的起始顶点编号
public int tid; // 边的终止顶点编号
public int w; // 权重
public Edge(int sid, int tid, int w) {
this.sid = sid;
this.tid = tid;
this.w = w;
}
}
// 下面这个类是为了dijkstra实现用的
private static class Vertex {
public int id; // 顶点编号ID
public int dist; // 从起始顶点到这个顶点的距离
public Vertex(int id, int dist) {
this.id = id;
this.dist = dist;
}
}
public void dijkstra(int s, int t) { // 从顶点s到顶点t的最短路径
int[] predecessor = new int[this.v]; // 用来还原最短路径
Vertex[] vertexes = new Vertex[this.v];
for (int i = 0; i < this.v; ++i) {
vertexes[i] = new Vertex(i, Integer.MAX_VALUE);
}
PriorityQueue queue = new PriorityQueue(this.v);// 小顶堆
boolean[] inqueue = new boolean[this.v]; // 标记是否进入过队列
vertexes[s].dist = 0;
queue.add(vertexes[s]);
inqueue[s] = true;
while (!queue.isEmpty()) {
Vertex minVertex = queue.poll(); // 取堆顶元素并删除
if (minVertex.id == t) break; // 最短路径产生了
for (int i = 0; i < adj[minVertex.id].size(); ++i) {
Edge e = adj[minVertex.id].get(i); // 取出一条minVertex相连的边
Vertex nextVertex = vertexes[e.tid]; // minVertex-->nextVertex
if (minVertex.dist + e.w < nextVertex.dist) { // 更新next的dist
nextVertex.dist = minVertex.dist + e.w;
predecessor[nextVertex.id] = minVertex.id;
if (inqueue[nextVertex.id]) {
queue.update(nextVertex); // 更新队列中的dist值
} else {
queue.add(nextVertex);
inqueue[nextVertex.id] = true;
}
}
}
}
// 输出最短路径
System.out.print(s);
print(s, t, predecessor);
}
private void print(int s, int t, int[] predecessor) {
if (s == t) return;
print(s, predecessor[t], predecessor);
System.out.print("->" + t);
}
}
- 我们用 vertexes 数组,记录从起始顶点到每个顶点的距离(dist)。起初,我们把所有顶点的 dist 都初始化为无穷大(也就是代码中的 Integer.MAX_VALUE)。我们把起始顶点的 dist 值初始化为 0,然后将其放到优先级队列中。
- 我们从优先级队列中取出 dist 最小的顶点 minVertex,然后考察这个顶点可达的所有顶点(代码中的 nextVertex)。如果 minVertex 的 dist 值加上 minVertex 与 nextVertex 之间边的权重 w 小于 nextVertex 当前的 dist 值,也就是说,存在另一条更短的路径,它经过 minVertex 到达 nextVertex。那我们就把 nextVertex 的 dist 更新为 minVertex 的 dist 值加上 w。然后,我们把 nextVertex 加入到优先级队列中。重复这个过程,直到找到终止顶点 t 或者队列为空。
以上就是 Dijkstra 算法的核心逻辑。除此之外,代码中还有两个额外的变量,predecessor 数组和 inqueue 数组。
- predecessor 数组的作用是为了还原最短路径,它记录每个顶点的前驱顶点。最后,我们通过递归的方式,将这个路径打印出来。打印路径的 print 递归代码我就不详细讲了,这个跟我们在图的搜索中讲的打印路径方法一样。如果不理解的话,你可以回过头去看下那一节。
- inqueue 数组是为了避免将一个顶点多次添加到优先级队列中。我们更新了某个顶点的 dist 值之后,如果这个顶点已经在优先级队列中了,就不要再将它重复添加进去了。
-
看完了代码和文字解释,你可能还是有点懵,那我就举个例子,再给你解释一下。
- 理解了 Dijkstra 的原理和代码实现,我们来看下,Dijkstra 算法的时间复杂度是多少?
- 在刚刚的代码实现中,最复杂就是 while 循环嵌套 for 循环那部分代码了。while 循环最多会执行 V 次(V 表示顶点的个数),而内部的 for 循环的执行次数不确定,跟每个顶点的相邻边的个数有关,我们分别记作 E0,E1,E2,……,E(V-1)。如果我们把这 V 个顶点的边都加起来,最大也不会超过图中所有边的个数 E(E 表示边的个数)。for 循环内部的代码涉及从优先级队列取数据、往优先级队列中添加数据、更新优先级队列中的数据,这样三个主要的操作。我们知道,优先级队列是用堆来实现的,堆中的这几个操作,时间复杂度都是 O(logV)(堆中的元素个数不会超过顶点的个数 V)。所以,综合这两部分,再利用乘法原则,整个代码的时间复杂度就是 O(E*logV) 。
- 对于软件开发工程师来说,我们经常要根据问题的实际背景,对解决方案权衡取舍。类似出行路线这种工程上的问题,我们没有必要非得求出个绝对最优解。很多时候,为了兼顾执行效率,我们只需要计算出一个可行的次优解就可以了。
- 对于这样两点之间距离较远的路线规划,我们可以把北京海淀区或者北京看作一个顶点,把上海黄浦区或者上海看作一个顶点,先规划大的出行路线。比如,如何从北京到上海,必须要经过某几个顶点,或者某几条干道,然后再细化每个阶段的小路线。
这样,最短路径问题就解决了。我们再来看另外两个问题,最少时间和最少红绿灯。
- 前面讲最短路径的时候,每条边的权重是路的长度。在计算最少时间的时候,算法还是不变,我们只需要把边的权重,从路的长度变成经过这段路所需要的时间。不过,这个时间会根据拥堵情况时刻变化。如何计算车通过一段路的时间呢?这是一个蛮有意思的问题,你可以自己思考下。
- 每经过一条边,就要经过一个红绿灯。关于最少红绿灯的出行方案,实际上,我们只需要把每条边的权值改为 1 即可,算法还是不变,可以继续使用前面讲的 Dijkstra 算法。不过,边的权值为 1,也就相当于无权图了,我们还可以使用之前讲过的广度优先搜索算法。因为我们前面讲过,广度优先搜索算法计算出来的两点之间的路径,就是两点的最短路径。
- 不过,这里给出的所有方案都非常粗糙,只是为了给你展示,如何结合实际的场景,灵活地应用算法,让算法为我们所用,真实的地图软件的路径规划,要比这个复杂很多。而且,比起 Dijkstra 算法,地图软件用的更多的是类似 A* 的启发式搜索算法,不过也是在 Dijkstra 算法上的优化罢了,我们后面会讲到,这里暂且不展开。
总结引申
- 今天,我们学习了一种非常重要的图算法,Dijkstra 最短路径算法。实际上,最短路径算法还有很多,比如 Bellford 算法、Floyd 算法等等。如果感兴趣,你可以自己去研究。
- 关于 Dijkstra 算法,我只讲了原理和代码实现。对于正确性,我没有去证明。之所以这么做,是因为证明过程会涉及比较复杂的数学推导。这个并不是我们的重点,你只要掌握这个算法的思路就可以了。