Handler作为Android应用层开发,进程通信一大重点,可以说是使用最频繁的一个机制,不管是IntentService,ThreadHandler都绕不开它。本文详解Handler机制的内部源码
深入剖析Handler,没有看错,比别人更深更精准!
看本文可以回答你这几个问题:
UI线程的Looper在哪里创建?
MessageQueue真的是个队列吗?
延迟处理机制的原理?
Handler中的Message同步和MessageQueue同步?
@[toc]
一、Handler介绍
Handler在Android os包下,当我们创建Handler时,它会绑定一个线程,并且创建一个消息队列,通过发送Message或者Runnable对象到队列并轮询取出,实现关联。
我们常用的Handler功能是,定时执行Runnable或者处理不同线程通信的问题,比如UI线程和子线程等。
由此可见Handler内部机制中的几大元素:Handler,Message,MessageQueue,Looper,ThreadLocal等,接下来,分别查看它的内部源码。
二、Handler源码剖析
Handler作为封装对外的处理器,我们来看看它对外的接口内部是做了哪些操作。
1. Handler构造函数:
它的构造函数,我归纳为三种方式,分别是:
1.传入自定义Looper对象,
2.继承Handler实现Callback接口模式,
3.默认创建的Looper模式,
其中2,3是我们常用的,当然1和2也能同时使用,callback接口中实现handleMessage,用于我们自定义Handler是实现回调用的。还有个被hide隐藏的传参,async是否同步,默认是不同步,且不支持设置同步模式。
可以传入自定义的Looper,Callback接口
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
常规的构造方法如下:
其中FIND_POTENTIAL_LEAKS标签是检查“继承类是否为非静态内部类”标签,我们知道,非静态内部类持有对象,容易导致内存泄漏的问题,可以查看我的《Android内存优化分析篇》
-
mAsynchronous可以看到一直是false
public Handler(Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
2. 创建Looper对象和mQueue消息队列
由上构造函数中调用Looper.myLooper();创建了Looper对象,并取用了新创建Looper对象内部的mQueue队列,详解下Looper分析
3. sendMessage
-
其中sendEmptyMessage通过obtion新获取了一个Message对象
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) { Message msg = Message.obtain(); msg.what = what; return sendMessageDelayed(msg, delayMillis); }
发送消息:sendMessageDelayed--->sendMessageAtTime--->enqueueMessage
注意到,在调用sendMessageAtTime时,传入的时间值: 系统时钟+delayMillis
其中将 msg.target标记为当前Handler对象
-
最终调用了MessageQueue的enqueueMessage,看后面MessageQueue分析
//----------1 public final boolean sendMessage(Message msg) { return sendMessageDelayed(msg, 0); } //----------2 public final boolean sendMessageDelayed(Message msg, long delayMillis) { if (delayMillis < 0) { delayMillis = 0; } return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis); } //---------3 public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); } //----------4 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
4. removeMessages
从队列删除
5. post(Runnable r)
-
在getPostMessage中讲Runnable封装成了Message对象
public final boolean post(Runnable r) { return sendMessageDelayed(getPostMessage(r), 0); } private static Message getPostMessage(Runnable r) { Message m = Message.obtain(); m.callback = r; return m; }
6. dispatchMessage和handlerMessage
我们看到dispatchMessage调用了callback和handlerMessage分发Message结果
那么,前面我们看到了经常调用的sendMessage,那么回调是在什么时候调用的呢?
-
让我们接下来一起看看Looper类吧。
public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } } public void handleMessage(Message msg) {}
三、Looper源码剖析
看looper做了什么,首先看mylooper方法,还记得吗,在Handler初始化时创建Looper对象调用的方法
1. myLooper方法
-
调用sThreadLocal取出一个looper对象
public static @Nullable Looper myLooper() { return sThreadLocal.get(); } // sThreadLocal.get() will return null unless you've called prepare(). static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
2. Looper.prepare()创建对象
上面看到mylooper从sThreadLocal取出,但是什么时候存的呢,looper又是如何创建?
由下看出Looper通过prepare创建并存入sThreadLocal,在构造同时创建MessageQueue
标记成员mThread为当前线程
-
quitAllowed标识能否安全退出
public static void prepare() { prepare(true); } private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); } private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); }
3. UI线程调用Handler,Looper怎么创建
prepareMainLooper:在当前线程初始化looper,在ActivityThread调用,也就是我们创建Activity时已经创建了Looper了
-
prepare(false):由于在ActivityThread创建,是不能安全退出的
/** * Initialize the current thread as a looper, marking it as an * application's main looper. The main looper for your application * is created by the Android environment, so you should never need * to call this function yourself. See also: {@link #prepare()} */ public static void prepareMainLooper() { prepare(false); synchronized (Looper.class) { if (sMainLooper != null) { throw new IllegalStateException("The main Looper has already been prepared."); } sMainLooper = myLooper(); } } //-------->ActivityThread: Main: public static void main(String[] args) { --- Looper.prepareMainLooper(); ActivityThread thread = new ActivityThread(); thread.attach(false); if (sMainThreadHandler == null) { sMainThreadHandler = thread.getHandler(); } if (false) { Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, "ActivityThread")); } // End of event ActivityThreadMain. Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); Looper.loop(); }
4. Looper.loop()
- UI线程创建Looper,上ActivityThread中,在调用prepare后接着调用Looper.loop
- loop通过 for (;;)死循环,从queue中取下一则消息
- 其中 msg.target.dispatchMessage(msg);,在上面Handler中将handler对象传给了looper
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; //--------------确保同一进程 Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } //--------------打印日志 final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } //--------------从队列中获取分发消息延时 final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs; //--------------Trace标记,用于记录message分发完成 final long traceTag = me.mTraceTag; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis(); final long end; try { msg.target.dispatchMessage(msg); end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis(); } finally { if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (slowDispatchThresholdMs > 0) { final long time = end - start; if (time > slowDispatchThresholdMs) { Slog.w(TAG, "Dispatch took " + time + "ms on " + Thread.currentThread().getName() + ", h=" + msg.target + " cb=" + msg.callback + " msg=" + msg.what); } } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } //--------------充值message对象参数 msg.recycleUnchecked(); } }
四、MessageQueue源码剖析
MessageQueue主要分析插入和取出,由下enqueueMessage插入方法看出,它名字带着Queue,但其实并不是,它实际是个单链表结构,通过native操作指针,去进行msg的读取操作。当然,这更加快捷的实施取出,删除和插入操作。
1. enqueueMessage
- msg.markInUse();标记当前msg正在使用
- 其中mMessages是可以理解为即将执行的Message对象
- 将当前mMessages与新传入的Msg的设置触发时间对比,如果新的Msg设置时间早,则将2者位置对调,将新的排前面,与之对比的mMessages排到其后。反之,则与mMessages后一个对比时间,依次类比,插入到队列中
- 其中,如果msg事Asynchronous同步的,那么它只能等到上一个同步msg执行完,才能被唤醒执行。
boolean enqueueMessage(Message msg, long when) {
...
synchronized (this) {
if (mQuitting) {
//------------->抛出一个IllegalStateException
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
//------------->标记当前msg正在使用
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
2. next取出
可以看出enqueueMessage和next都是同步的
通过循环,把mMessages当前msg
比较当前时间和Msg标记时间,如果早的话就设置一段指针查找超时时间
-
将msg标记为使用,并取出消息返回
Message next() { //----->当消息轮询退出时,mPtr指针找不到地址,返回空取不到对象 final long ptr = mPtr; if (ptr == 0) { return null; } //----->同步指针查找的时间,根据超时时间计算,比如当前未到msg的时间,指针会在一段计算好的超时时间后去查询 int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; //----->如果target为null,寻找下一个带“同步”标签的msg if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { //----->比较当前时间和Msg标记时间,如果早的话就设置一段指针查找超时时间 if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (DEBUG) Log.v(TAG, "Returning message: " + msg); msg.markInUse(); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } // Process the quit message now that all pending messages have been handled. if (mQuitting) { dispose(); return null; } // If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. mBlocked = true; continue; } if (mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); } // Run the idle handlers. // We only ever reach this code block during the first iteration. for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log.wtf(TAG, "IdleHandler threw exception", t); } if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } } // Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. nextPollTimeoutMillis = 0; } }
3. quit操作
- 前面标记是否能安全退出,否则报错
- 退出后唤醒指针,接触msg的锁
void quit(boolean safe) {
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
if (mQuitting) {
return;
}
mQuitting = true;
if (safe) {
removeAllFutureMessagesLocked();
} else {
removeAllMessagesLocked();
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr);
}
}
五、Message源码剖析
Message主要是一个Parcelable序列号对象,封装了不分信息和操作,它构造了一个对象池,这也是为什么我们一直发送msg,不会内存爆炸的原因,来看看实现
1. obtain()
- 维持一个大小为50的同步线程池
- 这里可以看出Message是个链表结构,obtain将sPool取出return Message,并对象池下一个msg标记为sPool
private static final int MAX_POOL_SIZE = 50;
...
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
2.recycleUnchecked 回收消息
- 回收初始化当前msg
- 如果当前对象池大小小于MAX_POOL_SIZE,则将初始化后的msg放到表头sPool,sPoolSize++。
- 由此可以看出,如果每次new新的Message传入Handler,必然增加内存消耗,通过obtain服用才是正确的做法
/**
* Recycles a Message that may be in-use.
* Used internally by the MessageQueue and Looper when disposing of queued Messages.
*/
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
3. Message标签:是否使用,同步标签
public void setAsynchronous(boolean async) {
if (async) {
flags |= FLAG_ASYNCHRONOUS;
} else {
flags &= ~FLAG_ASYNCHRONOUS;
}
}
/*package*/ boolean isInUse() {
return ((flags & FLAG_IN_USE) == FLAG_IN_USE);
}
/*package*/ void markInUse() {
flags |= FLAG_IN_USE;
}
六、总结
废了小半天功夫,整理了对Handler源码的阅读总结,虽然东西很多也很繁琐,不过如果认真去看,是不是发现越深入就越有趣,也越发发现Android源码的严谨性。平常至少简单一用,只要深入了解才能更好地去使用它理解它,比如Message对象池的应用,这不就是享元模式吗,希望大家都能有所体悟。