事务隔离级别

事务隔离级别

我们的数据库一般都会并发执行多个事务,多个事务可能会并发的对相同的一批数据进行增删改查操作,可能就会导致我们说的脏写、脏读、不可重复读、幻读这些问题。
这些问题的本质都是数据库的多事务并发问题,为了解决多事务并发问题,数据库设计了事务隔离机制、锁机制、MVCC多版本并发控制隔离机制,用一整套机制来解决多事务并发问题。

事务及其ACID属性
事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性。

  • 原子性(Atomicity) :事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。
  • 一致性(Consistent) :在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性。
  • 隔离性(Isolation) :数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。
  • 持久性(Durable) :事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。

并发事务处理带来的问题
更新丢失(Lost Update)或脏写
  当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题–最后的更新覆盖了由其他事务所做的更新。
脏读(Dirty Reads)
  一个事务正在对一条记录做修改,在这个事务完成并提交前,这条记录的数据就处于不一致的状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”数据,并据此作进一步的处理,就会产生未提交的数据依赖关系。这种现象被形象的叫做“脏读”。
  一句话:事务A读取到了事务B已经修改但尚未提交的数据,还在这个数据基础上做了操作。此时,如果B事务回滚,A读取的数据无效,不符合一致性要求。
不可重读(Non-Repeatable Reads)
  一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变、或某些记录已经被删除了!这种现象就叫做“不可重复读”。
  一句话:事务A内部的相同查询语句在不同时刻读出的结果不一致,不符合隔离性
幻读(Phantom Reads)
  一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“幻读”。
  一句话:事务A读取到了事务B提交的新增数据,不符合隔离性

事务隔离级别
“脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。


image.png

数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上“串行化”进行,这显然与“并发”是矛盾的。
同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读"和“幻读”并不敏感,可能更关心数据并发访问的能力。

锁机制

锁分类

  • 从性能上分为乐观锁(用版本对比来实现)和悲观锁
  • 从对数据操作的粒度分,分为表锁和行锁
  • 从对数据库操作的类型分,分为读锁和写锁(都属于悲观锁)

读锁(共享锁,S锁(Shared)):针对同一份数据,多个读操作可以同时进行而不会互相影响,比如:select * from T where id=1 lock in share mode
写锁(排它锁,X锁(eXclusive)):当前写操作没有完成前,它会阻断其他写锁和读锁,数据修改操作都会加写锁,查询也可以通过for update加写锁,比如:select * from T where id=1 for update

表锁
每次操作锁住整张表。开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低;一般用在整表数据迁移的场景。

行锁
每次操作锁住一行数据。开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度最高。
InnoDB与MYISAM的最大不同有两点:

  • InnoDB支持事务(TRANSACTION)
  • InnoDB支持行级锁

InnoDB在执行查询语句SELECT时(非串行隔离级别),不会加锁。但是update、insert、delete操作会加行锁。

间隙锁(Gap Lock)

间隙锁,锁的就是两个值之间的空隙。Mysql默认级别是repeatable-read,有办法解决幻读问题吗?间隙锁在某些情况下可以解决幻读问题。
间隙锁是在可重复读隔离级别下才会生效。

临键锁(Next-key Locks)
临键锁是INNODB的行锁默认算法,总结来说它就是记录锁和间隙锁的组合,临键锁会把查询出来的记录锁住,同时也会把该范围查询内的所有间隙空间也会锁住,再之它会把相邻的下一个区间也会锁住。

意向锁(Intention Lock):

又称I锁,针对表锁,主要是为了提高加表锁的效率,是mysql数据库自己加的。当有事务给表的数据行加了共享锁或排他锁,同时会给表设置一个标识,代表已经有行锁了,其他事务要想对表加表锁时,就不必逐行判断有没有行锁可能跟表锁冲突了,直接读这个标识就可以确定自己该不该加表锁。特别是表中的记录很多时,逐行判断加表锁的方式效率很低。而这个标识就是意向锁。

MVCC

多版本控制: 指的是一种提高并发的技术。最早的数据库系统,只有读读之间可以并发,读写,写读,写写都要阻塞。引入多版本之后,只有写写之间相互阻塞,其他三种操作都可以并行,这样大幅度提高了InnoDB的并发度。

在内部实现中,InnoDB通过undo log保存每条数据的多个版本,并且能够找回数据历史版本提供给用户读,每个事务读到的数据版本可能是不一样的。在同一个事务中,用户只能看到该事务创建快照之前已经提交的修改和该事务本身做的修改。

MVCC只在已提交读(Read Committed)和可重复读(Repeatable Read)两个隔离级别下工作,其他两个隔离级别和MVCC是不兼容的。因为未提交读,总数读取最新的数据行,而不是读取符合当前事务版本的数据行。而串行化(Serializable)则会对读的所有数据多加锁。

MVCC的实现原理主要是依赖每一行记录中两个隐藏字段,undo log,ReadView

MVCC相关的一些概念

这里我们先来理解下有关MVCC相关的一些概念,这些概念都理解后,我们会通过实际例子来演示MVCC的具体工作流程是怎么样的。

1、事务版本号

事务每次开启时,都会从数据库获得一个自增长的事务ID,可以从事务ID判断事务的执行先后顺序。这就是事务版本号。

也就是每当begin的时候,首选要做的就是从数据库获得一个自增长的事务ID,它也就是当前事务的事务ID。

2、隐藏字段

对于InnoDB存储引擎,每一行记录都有两个隐藏列trx_id、roll_pointer,如果数据表中存在主键或者非NULL的UNIQUE键时不会创建row_id,否则InnoDB会自动生成单调递增的隐藏主键row_id。

这里的记录操作,指的是insert|update|delete。对于delete操作而已,InnoDB认为是一个update操作,不过会更新一个另外的删除位,将行表示为deleted,并非真正删除。

3、undo log

undo log可以理解成回滚日志,它存储的是老版本数据。在表记录修改之前,会先把原始数据拷贝到undo log里,如果事务回滚,即可以通过undo log来还原数据。或者如果当前记录行不可见,可以顺着undo log链找到满足其可见性条件的记录行版本。

在insert/update/delete(本质也是做更新,只是更新一个特殊的删除位字段)操作时,都会产生undo log。

undo log有什么用途呢?

1、事务回滚时,保证原子性和一致性。
2、如果当前记录行不可见,可以顺着undo log链找到满足其可见性条件的记录行版本(用于MVCC快照读)。

4、版本链

多个事务并行操作某一行数据时,不同事务对该行数据的修改会产生多个版本,然后通过回滚指针(roll_pointer),连成一个链表,这个链表就称为版本链。如下:

image.png

5、快照读和当前读

快照读: 读取的是记录数据的可见版本(有旧的版本)。不加锁,普通的select语句都是快照读,如:

select * from user where id = 1;

当前读:读取的是记录数据的最新版本,显式加锁的都是当前读

select * from user where id = 1 for update;

select * from user where id = 1 lock in share mode;

6、ReadView

ReadView是事务在进行快照读的时候生成的记录快照, 可以帮助我们解决可见性问题的

如果一个事务要查询行记录,需要读取哪个版本的行记录呢? ReadView 就是来解决这个问题的。 ReadView 保存了当前事务开启时所有活跃的事务列表。换个角度,可以理解为: ReadView 保存了不应该让这个事务看到的其他事务 ID 列表。

ReadView是如何保证可见性判断的呢?我们先看看 ReadView 的几个重要属性

  • trx_ids: 当前系统中那些活跃(未提交)的读写事务ID, 它数据结构为一个List。(重点注意:这里的trx_ids中的活跃事务,不包括当前事务自己和已提交的事务,这点非常重要)

  • low_limit_id: 目前出现过的最大的事务ID+1,即下一个将被分配的事务ID。

  • up_limit_id: 活跃事务列表trx_ids中最小的事务ID,如果trx_ids为空,则up_limit_id 为 low_limit_id。

  • creator_trx_id: 表示生成该 ReadView 的事务的 事务id

访问某条记录的时候如何判断该记录是否可见,具体规则如下:

  • 如果被访问版本的 事务ID = creator_trx_id,那么表示当前事务访问的是自己修改过的记录,那么该版本对当前事务可见;

  • 如果被访问版本的 事务ID < up_limit_id,那么表示生成该版本的事务在当前事务生成 ReadView 前已经提交,所以该版本可以被当前事务访问。

  • 如果被访问版本的 事务ID > low_limit_id 值,那么表示生成该版本的事务在当前事务生成 ReadView 后才开启,所以该版本不可以被当前事务访问。

  • 如果被访问版本的 事务ID在 up_limit_id和low_limit_id 之间,那就需要判断一下版本的事务ID是不是在 trx_ids 列表中,如果在,说明创建 ReadView 时生成该版本的事务还是活跃的,该版本不可以被访问;
    如果不在,说明创建 ReadView 时生成该版本的事务已经被提交,该版本可以被访问。

画张图来理解下

image.png

这里需要思考的一个问题就是 何时创建ReadView?

上面说过,ReadView是来解决一个事务需要读取哪个版本的行记录的问题的。那么说明什么?只有在select的时候才会创建ReadView。但在不同的隔离级别是有区别的:

在RC隔离级别下,是每个select都会创建最新的ReadView;而在RR隔离级别下,则是当事务中的第一个select请求才创建ReadView(下面会详细举例说明)。

那insert/update/delete操作呢?

这样操作不会创建ReadView。但是这些操作在事务开启(begin)且其未提交的时候,那么它的事务ID,会存在在其它存在查询事务的ReadView记录中,也就是trx_ids中。

MVCC实现原理分析

1、如何查询一条记录

  1. 获取事务自己事务ID,即trx_id。(这个也不是select的时候获取的,而是这个事务开启的时候获取的 也就是begin的时候)
  2. 获取ReadView(这个才是select的时候才会生成的)
  3. 数据库表中如果查询到数据,那就到ReadView中的事务版本号进行比较。
  4. 如果不符合ReadView的可见性规则, 即就需要Undo log中历史快照,直到返回符合规则的数据;

InnoDB 实现MVCC,是通过ReadView+ Undo Log 实现的,Undo Log 保存了历史快照,ReadView可见性规则帮助判断当前版本的数据是否可见。

2、MVCC是如何实现读已提交和可重复读的呢?

其实其它流程都是一样的,读已提交和可重复读唯一的区别在于:在RC隔离级别下,是每个select都会创建最新的ReadView;而在RR隔离级别下,则是当事务中的第一个select请求才创建ReadView。

看完下面这个例子你应该就明白了。

image.png

参考:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容