吴恩达深度学习笔记(12)-计算图计算梯度下降

逻辑回归中的梯度下降(Logistic Regression Gradient Descent)

本节我们讨论怎样通过计算偏导数来实现逻辑回归的梯度下降算法。

它的关键点是几个重要公式,其作用是用来实现逻辑回归中梯度下降算法。

但是在本节中,将使用计算图对梯度下降算法进行计算。必须要承认的是,使用计算图来计算逻辑回归的梯度下降算法有点大材小用了。但是,以这个例子作为开始来讲解,可以使你更好的理解背后的思想。从而在讨论神经网络时,你可以更深刻而全面地理解神经网络。

接下来让我们开始学习逻辑回归的梯度下降算法。

假设样本只有两个特征x_1和x_2,为了计算z,我们需要输入参数w_1、w_2 和b,除此之外还有特征值x_1和x_2。因此z的计算公式为: z=w_1 x_1+w_2 x_2+b  

回想一下逻辑回归的公式定义如下:

^y=a=σ(z) 其中z=w^T x+b , σ(z)=1/(1+e^(-z) ) 

损失函数:   

代价函数:  

假设现在只考虑单个样本的情况,单个样本的代价函数定义如下:


其中a是逻辑回归的输出,y是样本的标签值。

现在让我们画出表示这个计算的计算图。 这里先复习下梯度下降法,w和b的修正量可以表达如下:


如图:在这个公式的外侧画上长方形。

然后计算: ^y=a=σ(z) 也就是计算图的下一步。最后计算损失函数L(a,y)。

有了计算图,我就不需要再写出公式了。

因此,为了使得逻辑回归中最小化代价函数L(a,y),我们需要做的仅仅是修改参数w和b的值。前面我们已经讲解了如何在单个训练样本上计算代价函数的前向步骤。

现在让我们来讨论通过反向计算出导数。 因为我们想要计算出的代价函数L(a,y)的导数,首先我们需要反向计算出代价函数L(a,y)关于a的导数,在编写代码时,你只需要用da 来表示(dL(a,y))/da 。 

通过微积分得到:


如果你不熟悉微积分,也不必太担心,我会列出本课程涉及的所有求导公式。那么如果你非常熟悉微积分,我们鼓励你主动推导前面介绍的代价函数的求导公式,使用微积分直接求出L(a,y)关于变量a的导数。如果你不太了解微积分,也不用太担心。现在我们已经计算出da,也就是最终输出结果的导数。 现在可以再反向一步,在编写Python代码时,你只需要用dz来表示代价函数L关于z 的导数dL/dz,也可以写成(dL(a,y))/dz,这两种写法都是正确的。 dL/dz=a-y 。 

因为

并且da/dz=a⋅(1-a), 而

因此将这两项相乘


为了简化推导过程,假设n_x这个推导的过程就是我之前提到过的链式法则。

如果你对微积分熟悉,放心地去推导整个求导过程,如果不熟悉微积分,你只需要知道dz=(a-y)已经计算好了。

现在进行最后一步反向推导,也就是计算w和b变化对代价函数L的影响,特别地,可以用:


视频中, dw_1 表示∂L/(∂w_1 )=x_1⋅dz, dw_2 表示∂L/(∂w_2 )=x_2⋅dz, db=dz。 

因此,关于单个样本的梯度下降算法,你所需要做的就是如下的事情: 

使用公式dz=(a-y)计算dz, 

使用

dw_1=x_1⋅dz 计算dw_1,

dw_2=x_2⋅dz计算dw_2,

db=dz 来计算db, 

然后:

更新w_1=w_1-adw_1,

更新w_2=w_2-adw_2,

更新b=b-αdb。 

这就是关于单个样本实例的梯度下降算法中参数更新一次的步骤。 


现在你已经知道了怎样计算导数,并且实现针对单个训练样本的逻辑回归的梯度下降算法。但是,训练逻辑回归模型不仅仅只有一个训练样本,而是有m个训练样本的整个训练集。

因此在下一个笔记中,我们将这些思想应用到整个训练样本集中,而不仅仅只是单个样本上。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容