103-BigData-31HBase优化

上一篇:102-BigData-30HBase

三、HBase优化

3.1、高可用
在HBase中Hmaster负责监控RegionServer的生命周期,均衡RegionServer的负载,如果Hmaster挂掉了,那么整个HBase集群将陷入不健康的状态,并且此时的工作状态并不会维持太久。所以HBase支持对Hmaster的高可用配置。

  1. 关闭HBase集群(如果没有开启则跳过此步)
$ bin/stop-hbase.sh
  1. 在conf目录下创建backup-masters文件
$ touch conf/backup-masters
  1. 在backup-masters文件中配置高可用HMaster节点
$ echo bigdata112 >  conf/backup-masters
  1. 将整个conf目录scp到其他节点
$ scp -r conf/ bigdata112:/opt/module/hbase-1.3.1
$ scp -r conf/ bigdata113:/opt/module/hbase-1.3.1
  1. 重新启动HBase后打开页面测试查看
0.98版本之后:http://bigdata111:16010

3.2、Hadoop的通用性优化

  1. NameNode元数据备份使用SSD
  2. 定时备份NameNode上的元数据
    每小时或者每天备份,如果数据极其重要,可以5~10分钟备份一次。备份可以通过定时任务复制元数据目录即可。
  3. 为NameNode指定多个元数据目录
    使用dfs.name.dir或者dfs.namenode.name.dir指定。这样可以提供元数据的冗余和健壮性,以免发生故障。
  4. NameNode的dir自恢复
    设置dfs.namenode.name.dir.restore为true,允许尝试恢复之前失败的dfs.namenode.name.dir目录,在创建checkpoint时做此尝试,如果设置了多个磁盘,建议允许。
  5. HDFS保证RPC调用会有较多的线程数
    hdfs-site.xml

属性:dfs.namenode.handler.count
解释:该属性是NameNode服务默认线程数,的默认值是10,根据机器的可用内存可以调整为50~100

属性:dfs.datanode.handler.count
解释:该属性默认值为10,是DataNode的处理线程数,如果HDFS客户端程序读写请求比较多,可以调高到1520,设置的值越大,内存消耗越多,不要调整的过高,一般业务中,510即可。

  1. HDFS副本数的调整
    hdfs-site.xml

属性:dfs.replication
解释:如果数据量巨大,且不是非常之重要,可以调整为23,如果数据非常之重要,可以调整为35。

  1. HDFS文件块大小的调整
    hdfs-site.xml

属性:dfs.blocksize
解释:块大小定义,该属性应该根据存储的大量的单个文件大小来设置,如果大量的单个文件都小于100M,建议设置成64M块大小,对于大于100M或者达到GB的这种情况,建议设置成256M,一般设置范围波动在64M~256M之间。

  1. MapReduce Job任务服务线程数调整
    mapred-site.xml

属性:mapreduce.jobtracker.handler.count
解释:该属性是Job任务线程数,默认值是10,根据机器的可用内存可以调整为50~100

  1. Http服务器工作线程数
    mapred-site.xml

属性:mapreduce.tasktracker.http.threads
解释:定义HTTP服务器工作线程数,默认值为40,对于大集群可以调整到80~100

  1. 文件排序合并优化
    mapred-site.xml

属性:mapreduce.task.io.sort.factor
解释:文件排序时同时合并的数据流的数量,这也定义了同时打开文件的个数,默认值为10,如果调高该参数,可以明显减少磁盘IO,即减少文件读取的次数。

  1. 设置任务并发
    mapred-site.xml

属性:mapreduce.map.speculative
解释:该属性可以设置任务是否可以并发执行,如果任务多而小,该属性设置为true可以明显加快任务执行效率,但是对于延迟非常高的任务,建议改为false,这就类似于迅雷下载。

  1. MR输出数据的压缩
    mapred-site.xml

属性:mapreduce.map.output.compress、mapreduce.output.fileoutputformat.compress
解释:对于大集群而言,建议设置Map-Reduce的输出为压缩的数据,而对于小集群,则不需要。

  1. 优化Mapper和Reducer的个数
    mapred-site.xml

属性:
mapreduce.tasktracker.map.tasks.maximum
mapreduce.tasktracker.reduce.tasks.maximum
解释:以上两个属性分别为一个单独的Job任务可以同时运行的Map和Reduce的数量。
设置上面两个参数时,需要考虑CPU核数、磁盘和内存容量。假设一个8核的CPU,业务内容非常消耗CPU,那么可以设置map数量为4,如果该业务不是特别消耗CPU类型的,那么可以设置map数量为40,reduce数量为20。这些参数的值修改完成之后,一定要观察是否有较长等待的任务,如果有的话,可以减少数量以加快任务执行,如果设置一个很大的值,会引起大量的上下文切换,以及内存与磁盘之间的数据交换,这里没有标准的配置数值,需要根据业务和硬件配置以及经验来做出选择。
在同一时刻,不要同时运行太多的MapReduce,这样会消耗过多的内存,任务会执行的非常缓慢,我们需要根据CPU核数,内存容量设置一个MR任务并发的最大值,使固定数据量的任务完全加载到内存中,避免频繁的内存和磁盘数据交换,从而降低磁盘IO,提高性能。

大概估算公式:
map = 2 + ⅔cpu_core
reduce = 2 + ⅓cpu_core

3.3、Linux优化

  1. 开启文件系统的预读缓存可以提高读取速度
$ sudo blockdev --setra 32768 /dev/sda

尖叫提示:ra是readahead的缩写

  1. 关闭进程睡眠池
    即不允许后台进程进入睡眠状态,如果进程空闲,则直接kill掉释放资源
$ sudo sysctl -w vm.swappiness=0
  1. 调整ulimit上限,默认值为比较小的数字
$ ulimit -n 查看允许最大进程数
$ ulimit -u 查看允许打开最大文件数

优化修改:

$ sudo vi /etc/security/limits.conf 修改打开文件数限制
末尾添加:
*                soft    nofile          1024000
*                hard    nofile          1024000
Hive             -       nofile          1024000
hive             -       nproc           1024000 

$ sudo vi /etc/security/limits.d/20-nproc.conf 修改用户打开进程数限制
修改为:
#*          soft    nproc     4096
#root       soft    nproc     unlimited
*          soft    nproc     40960
root       soft    nproc     unlimited

  1. 开启集群的时间同步NTP
    集群中某台机器同步网络时间服务器的时间,集群中其他机器则同步这台机器的时间。
  2. 更新系统补丁
    更新补丁前,请先测试新版本补丁对集群节点的兼容性。

3.4、Zookeeper优化

  1. 优化Zookeeper会话超时时间
    hbase-site.xml

参数:zookeeper.session.timeout
解释:In hbase-site.xml, set zookeeper.session.timeout to 30 seconds or less to bound failure detection (20-30 seconds is a good start).该值会直接关系到master发现服务器宕机的最大周期,默认值为30秒(不同的HBase版本,该默认值不一样),如果该值过小,会在HBase在写入大量数据发生而GC时,导致RegionServer短暂的不可用,从而没有向ZK发送心跳包,最终导致认为从节点shutdown。一般20台左右的集群需要配置5台zookeeper。

3.5、HBase优化

3.5.1、预分区
每一个region维护着startRow与endRowKey,如果加入的数据符合某个region维护的rowKey范围,则该数据交给这个region维护。那么依照这个原则,我们可以将数据索要投放的分区提前大致的规划好,以提高HBase性能。

  1. 手动设定预分区
hbase> create 'staff','info','partition1',SPLITS => ['1000','2000','3000','4000']
  1. 生成16进制序列预分区
create 'staff2','info','partition2',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
  1. 按照文件中设置的规则预分区
    创建splits.txt文件内容如下:
aaaa
bbbb
cccc
dddd

然后执行:

create 'staff3','partition3',SPLITS_FILE => '/opt/module/hbase-1.3.1/splits.txt'
  1. 使用JavaAPI创建预分区
//自定义算法,产生一系列Hash散列值存储在二维数组中
byte[][] splitKeys = 某个散列值函数
//创建HBaseAdmin实例
HBaseAdmin hAdmin = new HBaseAdmin(HBaseConfiguration.create());
//创建HTableDescriptor实例
HTableDescriptor tableDesc = new HTableDescriptor(tableName);
//通过HTableDescriptor实例和散列值二维数组创建带有预分区的HBase表
hAdmin.createTable(tableDesc, splitKeys);

3.5.2、RowKey设计
一条数据的唯一标识就是rowkey,那么这条数据存储于哪个分区,取决于rowkey处于哪个一个预分区的区间内,设计rowkey的主要目的 ,就是让数据均匀的分布于所有的region中,在一定程度上防止数据倾斜。接下来我们就谈一谈rowkey常用的设计方案。

  1. 生成随机数、hash、散列值

比如:
原本rowKey为1001的,SHA1后变成:dd01903921ea24941c26a48f2cec24e0bb0e8cc7
原本rowKey为3001的,SHA1后变成:49042c54de64a1e9bf0b33e00245660ef92dc7bd
原本rowKey为5001的,SHA1后变成:7b61dec07e02c188790670af43e717f0f46e8913
在做此操作之前,一般我们会选择从数据集中抽取样本,来决定什么样的rowKey来Hash后作为每个分区的临界值。

  1. 字符串反转

20170524000001转成10000042507102
20170524000002转成20000042507102

这样也可以在一定程度上散列逐步put进来的数据。

  1. 字符串拼接

20170524000001_a12e
20170524000001_93i7

3.5.3、内存优化

HBase操作过程中需要大量的内存开销,毕竟Table是可以缓存在内存中的,一般会分配整个可用内存的70%给HBase的Java堆。但是不建议分配非常大的堆内存,因为GC过程持续太久会导致RegionServer处于长期不可用状态,一般16~48G内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。

3.5.4、基础优化

1) 允许在HDFS的文件中追加内容

不是不允许追加内容么?没错,请看背景故事:

http://blog.cloudera.com/blog/2009/07/file-appends-in-hdfs/

hdfs-site.xmlhbase-site.xml

属性:dfs.support.append
解释:开启HDFS追加同步,可以优秀的配合HBase的数据同步和持久化。默认值为true。

  1. 优化DataNode允许的最大文件打开数
    hdfs-site.xml

属性:dfs.datanode.max.transfer.threads
解释:HBase一般都会同一时间操作大量的文件,根据集群的数量和规模以及数据动作,设置为4096或者更高。默认值:4096

  1. 优化延迟高的数据操作的等待时间
    hdfs-site.xml

属性:dfs.image.transfer.timeout
解释:如果对于某一次数据操作来讲,延迟非常高,socket需要等待更长的时间,建议把该值设置为更大的值(默认60000毫秒),以确保socket不会被timeout掉。

  1. 优化数据的写入效率
    mapred-site.xml

属性:
mapreduce.map.output.compress
mapreduce.map.output.compress.codec
解释:开启这两个数据可以大大提高文件的写入效率,减少写入时间。第一个属性值修改为true,第二个属性值修改为:org.apache.hadoop.io.compress.GzipCodec或者其他压缩方式。

  1. 优化DataNode存储

属性:dfs.datanode.failed.volumes.tolerated
解释: 默认为0,意思是当DataNode中有一个磁盘出现故障,则会认为该DataNode shutdown了。如果修改为1,则一个磁盘出现故障时,数据会被复制到其他正常的DataNode上,当前的DataNode继续工作。

  1. 设置RPC监听数量
    hbase-site.xml

属性:hbase.regionserver.handler.count
解释:默认值为30,用于指定RPC监听的数量,可以根据客户端的请求数进行调整,读写请求较多时,增加此值。

  1. 优化HStore文件大小
    hbase-site.xml

属性:hbase.hregion.max.filesize
解释:默认值10737418240(10GB),如果需要运行HBase的MR任务,可以减小此值,因为一个region对应一个map任务,如果单个region过大,会导致map任务执行时间过长。该值的意思就是,如果HFile的大小达到这个数值,则这个region会被切分为两个Hfile。

  1. 优化hbase客户端缓存
    hbase-site.xml

属性:hbase.client.write.buffer
解释:用于指定HBase客户端缓存,增大该值可以减少RPC调用次数,但是会消耗更多内存,反之则反之。一般我们需要设定一定的缓存大小,以达到减少RPC次数的目的。

  1. 指定scan.next扫描HBase所获取的行数
    hbase-site.xml

属性:hbase.client.scanner.caching
解释:用于指定scan.next方法获取的默认行数,值越大,消耗内存越大。

  1. flush、compact、split机制
    当MemStore达到阈值,将Memstore中的数据Flush进Storefile;compact机制则是把flush出来的小文件合并成大的Storefile文件。split则是当Region达到阈值,会把过大的Region一分为二。
    涉及属性:
    即:128M就是Memstore的默认阈值
hbase.hregion.memstore.flush.size:134217728

即:这个参数的作用是当单个HRegion内所有的Memstore大小总和超过指定值时,flush该HRegion的所有memstore。RegionServer的flush是通过将请求添加一个队列,模拟生产消费模型来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发OOM。

hbase.regionserver.global.memstore.upperLimit:0.4
hbase.regionserver.global.memstore.lowerLimit:0.38

即:当MemStore使用内存总量达到hbase.regionserver.global.memstore.upperLimit指定值时,将会有多个MemStores flush到文件中,MemStore flush 顺序是按照大小降序执行的,直到刷新到MemStore使用内存略小于lowerLimit

下一篇:104-BigData-32cdh

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容

  • Zookeeper用于集群主备切换。 YARN让集群具备更好的扩展性。 Spark没有存储能力。 Spark的Ma...
    Yobhel阅读 7,246评论 0 34
  • 背景 hbase主集群在生产环境已稳定运行有1年半时间,最大的单表region数已达7200多个,每天新增入库量就...
    丨程序之道丨阅读 952评论 0 6
  • 昔日白鹿高塬 吃水比油还难 一年两料庄稼 全靠天公恩典 今曰白鹿原 井水送家院 一料粮食吃两年 西瓜大又甜
    泰山寒梅阅读 234评论 7 12
  • 现在的我很喜欢自律这个词,无论是形容别人还是形容自己,听到都会有一种莫名的成就感。我的感悟其实都是比较散的,但是每...
    Maeve_f8dc阅读 458评论 0 4
  • 大姐大另谋高就了。冬日的阳光照例穿透重重叠叠的写字楼,柔和地投在她的桌面上,上面却平平荡荡空无一物,我心里也有些空...
    秋千儿阅读 346评论 2 0