PyTorch基本用法(九)——优化器

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

本文主要是关于PyTorch的一些用法。

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
import torch.utils.data as Data
from torch.autograd import Variable


# 定义超参数
LR = 0.01
BATCH_SIZE = 32
EPOCH = 10


# 生成数据
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim = 1)
y = x.pow(2) + 0.1  * torch.normal(torch.zeros(x.size()))

# 绘制数据图像
plt.scatter(x.numpy(), y.numpy())
plt.show()
png
# 定义数据库
dataset = Data.TensorDataset(data_tensor = x, target_tensor = y)

# 定义数据加载器
loader = Data.DataLoader(dataset = dataset, batch_size = BATCH_SIZE, shuffle = True, num_workers = 2)

# 定义pytorch网络
class Net(torch.nn.Module):
    
    def __init__(self, n_features, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_features, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)
    
    def forward(self, x):
        x = F.relu(self.hidden(x))
        y = self.predict(x)
        return y

# 定义不同的优化器网络
net_SGD = Net(1, 10, 1)
net_Momentum = Net(1, 10, 1)
net_RMSprop = Net(1, 10, 1)
net_Adam = Net(1, 10, 1)

# 选择不同的优化方法
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr = LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr = LR, momentum = 0.9)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr = LR, alpha = 0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr = LR, betas= (0.9, 0.99))

nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]

# 选择损失函数
loss_func = torch.nn.MSELoss()

# 不同方法的loss
loss_SGD = []
loss_Momentum = []
loss_RMSprop =[]
loss_Adam = []

# 保存所有loss
losses = [loss_SGD, loss_Momentum, loss_RMSprop, loss_Adam]

# 执行训练
for epoch in xrange(EPOCH):
    for step, (batch_x, batch_y) in enumerate(loader):
        var_x = Variable(batch_x)
        var_y = Variable(batch_y)
        for net, optimizer, loss_history in zip(nets, optimizers, losses):
            # 对x进行预测
            prediction = net(var_x)
            # 计算损失
            loss = loss_func(prediction, var_y)
            # 每次迭代清空上一次的梯度
            optimizer.zero_grad()
            # 反向传播
            loss.backward()
            # 更新梯度
            optimizer.step()
            # 保存loss记录
            loss_history.append(loss.data[0])
# 画图
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, loss_history in enumerate(losses):
    plt.plot(loss_history, label = labels[i])
plt.legend(loc = 'best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()
png

参考资料

  1. https://www.youtube.com/user/MorvanZhou
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容