Pytorch之图像分割(单个目标分割,Single Object Segmentation)

示例数据为Feta-Head-Circumference
下载地址: https://zenodo.org/record/1322001#.YTHD2Y4zaUl

Feta-Head-Circumference.png

模型结构 U-Net
U-Net

扩展阅读:https://github.com/pranjalrai-iitd/Fetal-head-segmentation-and-circumference-measurement-from-ultrasound-images

引入包

%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.pylab as plab
from PIL import Image, ImageDraw
import numpy as np
import pandas as pd
import os
import copy
import collections
from sklearn.model_selection import ShuffleSplit
from scipy import ndimage as ndi
from skimage.segmentation import mark_boundaries

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split, Subset
import torchvision.transforms as transforms
from torchvision import models,utils, datasets
import torch.nn.functional as F
from torchvision.transforms.functional import to_tensor, to_pil_image
from torch import optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from albumentations import (HorizontalFlip, VerticalFlip, Compose, Resize,)
from torchsummary import summary

# CPU or GPU
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# dataloader里的多进程用到num_workers
workers = 0 if os.name=='nt' else 4

数据初探

# 数据地址
path_train="./data/sos/training_set/"

imgs_list = [pp for pp in os.listdir(path_train) if "Annotation" not in pp and pp.endswith('.png')]
annts_list = [pp for pp in os.listdir(path_train) if "Annotation" in pp and pp.endswith('.png')]
print("number of images:", len(imgs_list))
print("number of annotations:", len(annts_list))
"""
number of images: 999
number of annotations: 999
"""

# 查看一些图片
np.random.seed(2019)
rnd_imgs = np.random.choice(imgs_list, 4)
print('The random images are: ', rnd_imgs)
# The random images are:  ['166_2HC.png' '434_HC.png' '244_HC.png' '826_3HC.png']
# 可视化图片
def show_img_mask(img, mask):
    if torch.is_tensor(img):
        img = to_pil_image(img)
        mask = to_pil_image(mask)
        
    img_mask = mark_boundaries(
                np.array(img), 
                np.array(mask),
                outline_color=(0,1,0),
                color=(0,1,0)
            )
    plt.imshow(img_mask)

# 画图查看图片    
for fn in rnd_imgs:
    img_path = os.path.join(path_train, fn)
    annt_path = img_path.replace(".png", "_Annotation.png")
    
    img = Image.open(img_path)
    annt_edges = Image.open(annt_path)
    mask = ndi.binary_fill_holes(annt_edges)        

    plt.figure(figsize=(10, 10))
    plt.subplot(1, 3, 1) 
    plt.imshow(img, cmap="gray")

    plt.subplot(1, 3, 2) 
    plt.imshow(mask, cmap="gray")

    plt.subplot(1, 3, 3) 
    show_img_mask(img, mask)
data status

构建Dataset,Transforms,DataLoader

# transforms
h, w = 128, 192
transform_train = Compose([ Resize(h, w), 
                HorizontalFlip(p=0.5), 
                VerticalFlip(p=0.5), 
              ])

transform_val = Resize(h, w)

# 创建datasets
class FetalDataset(Dataset):
    def __init__(self, path_data, transform=None):
        imgs_list = [pp for pp in os.listdir(path_train) if "Annotation" not in pp and pp.endswith('.png')]
        annts_list = [pp for pp in os.listdir(path_train) if "Annotation" in pp and pp.endswith('.png')]
        self.path_imgs = [os.path.join(path_data, fn) for fn in imgs_list]
        self.path_annts = [path_img.replace('.png', '_Annotation.png') for path_img in self.path_imgs]
        self.transform = transform
        
    def __len__(self):
        return len(self.path_imgs)
    
    def __getitem__(self, idx):
        path_img = self.path_imgs[idx]
        image = Image.open(path_img)
        path_annt = self.path_annts[idx]
        annt_edges = Image.open(path_annt)
        mask = ndi.binary_fill_holes(annt_edges)
        image = np.array(image)
        mask = mask.astype('uint8')
        
        if self.transform:
            augmented = self.transform(image=image, mask=mask)
            image = augmented['image']
            mask = augmented['mask']
            
        image = to_tensor(image)
        mask = 255 * to_tensor(mask)
        
        return image, mask

# 实例化dataset
fetal_train_ds = FetalDataset(path_train, transform=transform_train)
fetal_val_ds = FetalDataset(path_train, transform=transform_val)
# print(len(fetal_train_ds))
# print(len(fetal_val_ds))

# 数据分割为训练验证集
sss = ShuffleSplit(n_splits=1, test_size=0.2, random_state=0)
indices = range(len(fetal_train_ds))

for train_index, val_index in sss.split(indices):
    train_ds = Subset(fetal_train_ds, train_index)
    print(len(train_ds))

    val_ds = Subset(fetal_val_ds, val_index)
    print(len(val_ds))

plt.figure(figsize=(5,5))
for img,mask in train_ds:
    show_img_mask(img,mask)
    break
    
# 构建dataloader
train_dl = DataLoader(train_ds, batch_size=8, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=16, shuffle=False)

# 打印出数据查看
for img, mask in train_dl:
    print(img.shape, img.dtype)
    # torch.Size([8, 1, 128, 192]) torch.float32
    print(mask.shape, mask.dtype)
    # torch.Size([8, 1, 128, 192]) torch.float32
    break
"""
799
200
torch.Size([8, 1, 128, 192]) torch.float32
torch.Size([8, 1, 128, 192]) torch.float32
"""
转换后图片

模型定义

# 定义模型 encoder-decoder model  U-Net
class SegNet(nn.Module):
    def __init__(self, params):
        super(SegNet, self).__init__()
        C_in, H_in, W_in = params['input_shape']
        init_f = params['initial_filters']
        num_outputs = params['num_outputs']
        # 定义各卷积层
        self.conv1 = nn.Conv2d(C_in, init_f, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(init_f, 2*init_f, kernel_size=3, stride=1, padding=1)
        self.conv3 = nn.Conv2d(2*init_f, 4*init_f, kernel_size=3, stride=1, padding=1)
        self.conv4 = nn.Conv2d(4*init_f, 8*init_f, kernel_size=3, stride=1, padding=1)
        self.conv5 = nn.Conv2d(8*init_f, 16*init_f, kernel_size=3, stride=1, padding=1)
        # 定义上采样层
        self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        
        self.conv_up1 = nn.Conv2d(16*init_f, 8*init_f, kernel_size=3, stride=1, padding=1)
        self.conv_up2 = nn.Conv2d(8*init_f, 4*init_f, kernel_size=3, stride=1, padding=1)
        self.conv_up3 = nn.Conv2d(4*init_f, 2*init_f, kernel_size=3, stride=1, padding=1)
        self.conv_up4 = nn.Conv2d(2*init_f, init_f, kernel_size=3, stride=1, padding=1)
        
        self.conv_out = nn.Conv2d(init_f, num_outputs, kernel_size=3, padding=1)
        
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        
        x = F.relu(self.conv3(x))
        x = F.max_pool2d(x, 2, 2)

        x = F.relu(self.conv4(x))
        x = F.max_pool2d(x, 2, 2)

        x = F.relu(self.conv5(x))
        
        x = self.upsample(x)
        x = F.relu(self.conv_up1(x))

        x = self.upsample(x)
        x = F.relu(self.conv_up2(x))
        
        x = self.upsample(x)
        x = F.relu(self.conv_up3(x))
        
        x = self.upsample(x)
        x = F.relu(self.conv_up4(x))

        x = self.conv_out(x)
        
        return x
        
params_model={
        "input_shape": (1, 128, 192),
        "initial_filters": 16, 
        "num_outputs": 1,
            }

model = SegNet(params_model).to(device)
# print(model)
# """
# SegNet(
#   (conv1): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv4): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv5): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (upsample): Upsample(scale_factor=2.0, mode=bilinear)
#   (conv_up1): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv_up2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv_up3): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv_up4): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv_out): Conv2d(16, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
# )
# """
# 查看模型信息
summary(model, input_size=(1, 128, 192))

# ----------------------------------------------------------------
#         Layer (type)               Output Shape         Param #
# ================================================================
#             Conv2d-1         [-1, 16, 128, 192]             160
#             Conv2d-2           [-1, 32, 64, 96]           4,640
#             Conv2d-3           [-1, 64, 32, 48]          18,496
#             Conv2d-4          [-1, 128, 16, 24]          73,856
#             Conv2d-5           [-1, 256, 8, 12]         295,168
#           Upsample-6          [-1, 256, 16, 24]               0
#             Conv2d-7          [-1, 128, 16, 24]         295,040
#           Upsample-8          [-1, 128, 32, 48]               0
#             Conv2d-9           [-1, 64, 32, 48]          73,792
#          Upsample-10           [-1, 64, 64, 96]               0
#            Conv2d-11           [-1, 32, 64, 96]          18,464
#          Upsample-12         [-1, 32, 128, 192]               0
#            Conv2d-13         [-1, 16, 128, 192]           4,624
#            Conv2d-14          [-1, 1, 128, 192]             145
# ================================================================
# Total params: 784,385
# Trainable params: 784,385
# Non-trainable params: 0
# ----------------------------------------------------------------
# Input size (MB): 0.09
# Forward/backward pass size (MB): 22.88
# Params size (MB): 2.99
# Estimated Total Size (MB): 25.96
# ----------------------------------------------------------------

定义损失函数 Dice metric

Dice系数, 根据 Lee Raymond Dice命名,是一种集合相似度度量函数,通常用于计算两个样本的相似度(值范围为 [0, 1]):


dice coefficient

|X⋂Y| - X 和 Y 之间的交集;|X| 和 |Y| 分别表示 X 和 Y 的元素个数. 其中,分子中的系数 2,是因为分母存在重复计算 X 和 Y 之间的共同元素的原因.

Dice 系数差异函数(Dice loss):


Dice loss.png
## 定义损失函数
# Dice系数是一种集合相似度度量函数,通常用于计算两个样本的相似度,取值范围在[0,1]
# https://blog.csdn.net/JMU_Ma/article/details/97533768  , https://zhuanlan.zhihu.com/p/86704421
def dice_loss(pred, target, smooth = 1e-5):
    intersection = (pred * target).sum(dim=(2,3))
    union = pred.sum(dim=(2,3)) + target.sum(dim=(2,3)) 
    
    dice = 2.0 * (intersection + smooth) / (union+ smooth)    
    loss = 1.0 - dice
    
    return loss.sum(), dice.sum()

def loss_func(pred, target):
    bce = F.binary_cross_entropy_with_logits(pred, target,  reduction='sum')
    
    pred = torch.sigmoid(pred)
    dlv, _ = dice_loss(pred, target)
    
    loss = bce  + dlv

    return loss

模型设计及训练

定义几个计算辅助函数
# 取得学习率
def get_lr(opt):
    for param_group in opt.param_groups:
        return param_group['lr']
# 定义评价函数
def metrics_batch(pred, target):
    pred = torch.sigmoid(pred)
    _, metric = dice_loss(pred, target)
    
    return metric

# 各批次损失计算
def loss_batch(loss_func, output, target, opt=None):   
    loss = loss_func(output, target)
    
    with torch.no_grad():
        pred = torch.sigmoid(output)
        _, metric_b = dice_loss(pred, target)
    
    if opt is not None:
        opt.zero_grad()
        loss.backward()
        opt.step()

    return loss.item(), metric_b

# 各轮次计算
def loss_epoch(model,loss_func,dataset_dl,sanity_check=False,opt=None):
    running_loss = 0.0
    running_metric = 0.0
    len_data = len(dataset_dl.dataset)

    for xb, yb in dataset_dl:
        xb = xb.to(device)
        yb = yb.to(device)
        
        output = model(xb)
        loss_b, metric_b = loss_batch(loss_func, output, yb, opt)
        running_loss += loss_b
        
        if metric_b is not None:
            running_metric += metric_b

        if sanity_check is True:
            break
    
    loss = running_loss / float(len_data)
    
    metric = running_metric / float(len_data)
    
    return loss, metric
模型定义
# 定义模型 encoder-decoder model  U-Net
class SegNet(nn.Module):
    def __init__(self, params):
        super(SegNet, self).__init__()
        C_in, H_in, W_in = params['input_shape']
        init_f = params['initial_filters']
        num_outputs = params['num_outputs']
        # 定义各卷积层
        self.conv1 = nn.Conv2d(C_in, init_f, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(init_f, 2*init_f, kernel_size=3, stride=1, padding=1)
        self.conv3 = nn.Conv2d(2*init_f, 4*init_f, kernel_size=3, stride=1, padding=1)
        self.conv4 = nn.Conv2d(4*init_f, 8*init_f, kernel_size=3, stride=1, padding=1)
        self.conv5 = nn.Conv2d(8*init_f, 16*init_f, kernel_size=3, stride=1, padding=1)
        # 定义上采样层
        self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        
        self.conv_up1 = nn.Conv2d(16*init_f, 8*init_f, kernel_size=3, stride=1, padding=1)
        self.conv_up2 = nn.Conv2d(8*init_f, 4*init_f, kernel_size=3, stride=1, padding=1)
        self.conv_up3 = nn.Conv2d(4*init_f, 2*init_f, kernel_size=3, stride=1, padding=1)
        self.conv_up4 = nn.Conv2d(2*init_f, init_f, kernel_size=3, stride=1, padding=1)
        
        self.conv_out = nn.Conv2d(init_f, num_outputs, kernel_size=3, padding=1)
        
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        
        x = F.relu(self.conv3(x))
        x = F.max_pool2d(x, 2, 2)

        x = F.relu(self.conv4(x))
        x = F.max_pool2d(x, 2, 2)

        x = F.relu(self.conv5(x))
        
        x = self.upsample(x)
        x = F.relu(self.conv_up1(x))

        x = self.upsample(x)
        x = F.relu(self.conv_up2(x))
        
        x = self.upsample(x)
        x = F.relu(self.conv_up3(x))
        
        x = self.upsample(x)
        x = F.relu(self.conv_up4(x))

        x = self.conv_out(x)
        
        return x
        
params_model={
        "input_shape": (1, 128, 192),
        "initial_filters": 16, 
        "num_outputs": 1,
            }

model = SegNet(params_model).to(device)
# print(model)
# """
# SegNet(
#   (conv1): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv4): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv5): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (upsample): Upsample(scale_factor=2.0, mode=bilinear)
#   (conv_up1): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv_up2): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv_up3): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv_up4): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (conv_out): Conv2d(16, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
# )
# """
# 查看模型信息
summary(model, input_size=(1, 128, 192))

# ----------------------------------------------------------------
#         Layer (type)               Output Shape         Param #
# ================================================================
#             Conv2d-1         [-1, 16, 128, 192]             160
#             Conv2d-2           [-1, 32, 64, 96]           4,640
#             Conv2d-3           [-1, 64, 32, 48]          18,496
#             Conv2d-4          [-1, 128, 16, 24]          73,856
#             Conv2d-5           [-1, 256, 8, 12]         295,168
#           Upsample-6          [-1, 256, 16, 24]               0
#             Conv2d-7          [-1, 128, 16, 24]         295,040
#           Upsample-8          [-1, 128, 32, 48]               0
#             Conv2d-9           [-1, 64, 32, 48]          73,792
#          Upsample-10           [-1, 64, 64, 96]               0
#            Conv2d-11           [-1, 32, 64, 96]          18,464
#          Upsample-12         [-1, 32, 128, 192]               0
#            Conv2d-13         [-1, 16, 128, 192]           4,624
#            Conv2d-14          [-1, 1, 128, 192]             145
# ================================================================
# Total params: 784,385
# Trainable params: 784,385
# Non-trainable params: 0
# ----------------------------------------------------------------
# Input size (MB): 0.09
# Forward/backward pass size (MB): 22.88
# Params size (MB): 2.99
# Estimated Total Size (MB): 25.96
# ----------------------------------------------------------------

模型训练与验证

模型训练主函数
# 训练验证主函数
def train_val(model, params):
    num_epochs = params["num_epochs"]
    loss_func = params["loss_func"]
    opt = params["optimizer"]
    train_dl = params["train_dl"]
    val_dl = params["val_dl"]
    sanity_check = params["sanity_check"]
    lr_scheduler = params["lr_scheduler"]
    path2weights = params["path2weights"]
    
    loss_history = {
        "train": [],
        "val": []}
    
    metric_history = {
        "train": [],
        "val": []}    
    
    
    best_model_wts = copy.deepcopy(model.state_dict())
    best_loss = float('inf')    
    
    for epoch in range(num_epochs):
        current_lr = get_lr(opt)
        print('Epoch {}/{}, current lr={}'.format(epoch, num_epochs - 1, current_lr))   

        model.train()
        train_loss, train_metric = loss_epoch(model,loss_func,train_dl,sanity_check,opt)

        loss_history["train"].append(train_loss)
        metric_history["train"].append(train_metric)
        
        model.eval()
        with torch.no_grad():
            val_loss, val_metric = loss_epoch(model,loss_func,val_dl,sanity_check)
       
        loss_history["val"].append(val_loss)
        metric_history["val"].append(val_metric)   
        
        if val_loss < best_loss:
            best_loss = val_loss
            best_model_wts = copy.deepcopy(model.state_dict())
            
            torch.save(model.state_dict(), path2weights)
            print("Copied best model weights!")
            
        lr_scheduler.step(val_loss)
        if current_lr != get_lr(opt):
            print("Loading best model weights!")
            model.load_state_dict(best_model_wts) 
            
        print("train loss: %.6f, accuracy: %.2f" %(train_loss, 100*train_metric))
        print("val loss: %.6f, accuracy: %.2f" %(val_loss, 100*val_metric))
        print("-"*10) 
        

    model.load_state_dict(best_model_wts)
    return model, loss_history, metric_history
模型训练
# 优化函数及学习率更新策略
opt = optim.Adam(model.parameters(), lr=3e-4)
lr_scheduler = ReduceLROnPlateau(opt, mode='min',factor=0.5, patience=20,verbose=1)

path_models = "./models/sos/"
if not os.path.exists(path_models):
    os.mkdir(path_models)

params_train={
    "num_epochs": 10,
    "optimizer": opt,
    "loss_func": loss_func,
    "train_dl": train_dl,
    "val_dl": val_dl,
    "sanity_check": False,
    "lr_scheduler": lr_scheduler,
    "path2weights": path_models+"weights.pt",
}

model, loss_hist, metric_hist = train_val(model,params_train)

可视化结果

num_epochs=params_train["num_epochs"]

plt.title("Train-Val Loss")
plt.plot(range(1,num_epochs+1),loss_hist["train"],label="train")
plt.plot(range(1,num_epochs+1),loss_hist["val"],label="val")
plt.ylabel("Loss")
plt.xlabel("Training Epochs")
plt.legend()
plt.show()

# plot accuracy progress
plt.title("Train-Val Accuracy")
plt.plot(range(1,num_epochs+1),metric_hist["train"],label="train")
plt.plot(range(1,num_epochs+1),metric_hist["val"],label="val")
plt.ylabel("Accuracy")
plt.xlabel("Training Epochs")
plt.legend()
plt.show()
Train-Val Loss.png
Train-Val Accuracy.png

部署测试

# 部署并对测试数据进行测试验证 
# 部署前需要加载model的网络结构,这里因为前面model已存在,所以未实例化
np.random.seed(2019)
path_test = './data/sos/test_set/'
imgs_list = [pp for pp in os.listdir(path_test) if "Annotation" not in pp]

rnd_imgs = np.random.choice(imgs_list, 4)
print(rnd_imgs)

model_weights_path = './models/sos/weights.pt'
model.load_state_dict(torch.load(model_weights_path))
model.eval()


for fn in rnd_imgs:
    path_img = os.path.join(path_test, fn)
    img = Image.open(path_img)
    img = img.resize((w,h))
    img_t = to_tensor(img).unsqueeze(0).to(device)
    
    pred = model(img_t)
    pred = torch.sigmoid(pred)[0]
    mask_pred = (pred[0]>=0.5)

    plt.figure(figsize=(10, 10))
    plt.subplot(1, 3, 1) 
    plt.imshow(img, cmap="gray")

    plt.subplot(1, 3, 2) 
    plt.imshow(mask_pred.cpu(), cmap="gray")
    
    plt.subplot(1, 3, 3) 
    show_img_mask(img, mask_pred.cpu())
test data result
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容