总结:Bootstrap(自助法),Bagging,Boosting(提升)

前言

最近在理清一些很必要的也很基础的东西,记录一下,结合网上和文献,自己也有些易化使之更轻松理解,如有错误,请不吝赐教,多谢!


Bootstrap(自助法)

Bootstrap是一种抽样方法

核心思想

这里写图片描述

子样本之于样本,可以类比样本之于总体

栗子:我要统计鱼塘里面的鱼的条数,怎么统计呢?假设鱼塘总共有鱼1000条,我是开了上帝视角的,但是你是不知道里面有多少。

步骤

1. 承包鱼塘,不让别人捞鱼(规定总体分布不变)。
2. 自己捞鱼,捞100条,都打上标签(构造样本)
3. 把鱼放回鱼塘,休息一晚(使之混入整个鱼群,确保之后抽样随机)
4. 开始捞鱼,每次捞100条,数一下,自己昨天标记的鱼有多少条,占比多少(一次重采样取分布)。
5. 重复3,4步骤n次。建立分布。

假设一下,第一次重新捕鱼100条,发现里面有标记的鱼12条,记下为12%,放回去,再捕鱼100条,发现标记的为9条,记下9%,重复重复好多次之后,假设取置信区间95%,你会发现,每次捕鱼平均在10条左右有标记,所以,我们可以大致推测出鱼塘有1000条左右。其实是一个很简单的类似于一个比例问题。这也是因为提出者Efron给统计学顶级期刊投稿的时候被拒绝的理由--"太简单"。这也就解释了,为什么在小样本的时候,bootstrap效果较好,你这样想,如果我想统计大海里有多少鱼,你标记100000条也没用啊,因为实际数量太过庞大,你取的样本相比于太过渺小,最实际的就是,你下次再捕100000的时候,发现一条都没有标记,,,这特么就尴尬了。。。


Bootstrap经典语录

  • Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好。通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸。

  • 就是一个在自身样本重采样的方法来估计真实分布的问题

  • 当我们不知道样本分布的时候,bootstrap方法最有用。

  • 整合多个弱分类器,成为一个强大的分类器。这时候,集合分类器(Boosting, Bagging等)出现了。


什么是集成学习(ensemble learning)

了解boosting和bagging之前,先了解一下什么是集成学习,一句话,三个臭皮匠顶个诸葛亮,一箭易折十箭难折,千里之堤溃于蚁穴,啊,跑题了。在分类的表现上就是,多个弱分类器组合变成强分类器。

这里写图片描述

一句话,假设各弱分类器间具有一定差异性(如不同的算法,或相同算法不同参数配置),这会导致生成的分类决策边界不同,也就是说它们在决策时会犯不同的错误。将它们结合后能得到更合理的边界,减少整体错误,实现更好的分类效果。


Bagging(bootstrap aggregation)

首先:bagging和boosting都是集成学习(ensemble learning)领域的基本算法

bagging:从训练集从进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果,至于为什么叫bootstrap aggregation,因为它抽取训练样本的时候采用的就是bootstrap的方法!


Bagging策略过程

这里写图片描述
  • 从样本集中用Bootstrap采样选出n个训练样本(放回,因为别的分类器抽训练样本的时候也要用)
  • 在所有属性上,用这n个样本训练分类器(CART or SVM or ...)
  • 重复以上两步m次,就可以得到m个分类器(CART or SVM or ...)
  • 将数据放在这m个分类器上跑,最后投票机制(多数服从少数)看到底分到哪一类(分类问题)

Bagging代表算法-RF(随机森林)

RF:Random Forest

其中的Random就是指

1.训练样本选择方面的Random:

Bootstrap方法随机选择子样本

2.特征选择方面的Random:

属性集中随机选择k个属性,每个树节点分裂时,从这随机的k个属性,选择最优的(如何选择最优又有各种最大增益的方法,不在本文讨论范围内)。


RF构造流程

这里写图片描述

1.用Random(训练样本用Bootstrap方法,选择分离叶子节点用上面的2)的方式构造一棵决策树(CART)
2.用1的方法构造很多决策树,每棵决策树都最大可能地进行生长而不进行剪枝,许多决策树构成一片森林,决策树之间没有联系
3.测试数据进入每一棵决策树,每棵树做出自己的判断,然后进行投票选出最终所属类别(默认每棵树权重一致)


RF优点

1.不容易出现过拟合,因为选择训练样本的时候就不是全部样本。
2.可以既可以处理属性为离散值的量,比如ID3算法来构造树,也可以处理属性为连续值的量,比如C4.5算法来构造树。
3.对于高维数据集的处理能力令人兴奋,它可以处理成千上万的输入变量,并确定最重要的变量,因此被认为是一个不错的降维方法。此外,该模型能够输出变量的重要性程度,这是一个非常便利的功能。
4.分类不平衡的情况时,随机森林能够提供平衡数据集误差的有效方法

RF缺点

1.随机森林在解决回归问题时并没有像它在分类中表现的那么好,这是因为它并不能给出一个连续型的输出。当进行回归时,随机森林不能够作出超越训练集数据范围的预测,这可能导致在对某些还有特定噪声的数据进行建模时出现过度拟合。
2.对于许多统计建模者来说,随机森林给人的感觉像是一个黑盒子——你几乎无法控制模型内部的运行,只能在不同的参数和随机种子之间进行尝试。


Boosting

核心:Boosting是一种框架算法,用来提高弱分类器准确度的方法,这种方法通过构造一个预测函数序列,然后以一定的方式将他们组合成为一个准确度较高的预测函数,还有就是,Boosting算法更加关注错分的样本,这点和Active Learning的寻找最有价值的训练样本有点遥相呼应的感觉

很抽象对不对,没关系,我们通过Adaboost来理解这个核心思想。


Boosting算法代表--Adaboost(Adaptive Boosting)

核心思想:一种迭代算法,针对同一个训练集训练不同的分类器(弱分类器),然后进行分类,对于分类正确的样本权值低,分类错误的样本权值高(通常是边界附近的样本),最后的分类器是很多弱分类器的线性叠加(加权组合),分类器相当简单。实际上就是一个简单的弱分类算法提升(boost)的过程。

结合图形来过一遍Adaboost算法

这里写图片描述

算法开始前,需要将每个样本的权重初始化为1/m,这样一开始每个样本都是等概率的分布,每个分类器都会公正对待。

这里写图片描述

Round1,因为样本权重都一样,所以分类器开始划分,根据自己分类器的情况,只和分类器有关。划分之后发现分错了三个"+"号,那么这些分错的样本,在给下一个分类器的时候权重就得到提高,也就是会影响到下次取训练样本的分布,就是提醒下一个分类器,“诶!你注意点这几个小子,我上次栽在他们手里了!”

这里写图片描述

Round2,第二代分类器信誓旦旦的对上一代分类器说"我知道了,大哥!我一定睁大眼睛好好分着三个玩意!"ok,这次三个上次分错的都被分出来了,但是并不是全部正确,这次又栽倒在左下角三个"-"上了,然后临死前,第二代分类器对下一代分类器说"这次我和上一代分类器已经把他们摸得差不多了,你再稍微注意下左下角那三个小子,也别忘了上面那三个(一代错分的那三个"+")!"

这里写图片描述

Round3:有了上面两位大哥的提醒,第三代分类器表示,我差不多都知道上次大哥们都错哪了,我只要小心这几个,应该没什么问题!只要把他们弄错的我给整对了,然后把我们收集的信息一对,这不就行了么!ok,第三代分类器不负众望,成功分对上面两代分类器重点关注的对象,至于分错的那几个小的,以前大哥们都分对了,我们坐下来核对一下就行了!

这里写图片描述

最后,三个分类器坐下来,各自谈了谈心得,分配了下权重,然后一个诸葛亮就诞生啦!是不是道理很简单!至于权重如何计算,不在本文讨论范围内。


Adaboost优点

1.可以使用各种方法构造子分类器,Adaboost算法提供的是框架
2.简单,不用做特征筛选
3.相比较于RF,更不用担心过拟合问题

Adaboost缺点

1.从wiki上介绍的来看,adaboost对于噪音数据和异常数据是十分敏感的。Boosting方法本身对噪声点异常点很敏感,因此在每次迭代时候会给噪声点较大的权重,这不是我们系统所期望的。
2.运行速度慢,凡是涉及迭代的基本上都无法采用并行计算,Adaboost是一种"串行"算法.所以GBDT(Gradient Boosting Decision Tree)也非常慢。


Pay Attention

1.Bagging: 树"并行"生成 ,如RF;Boosting:树"串行"生成,如Adaboost

2.boosting中的基模型为弱模型,而RF中的基树是强模型(大多数情况)

3.boosting重采样的不是样本,而是样本的分布,每次迭代之后,样本的分布会发生变化,也就是被分错的样本会更多的出现在下一次训练集中

4.明确一点,我们迭代也好(Adaboost),并行(RF)也好,只和训练集有关,和测试集真的一毛钱关系都没有好么!我们先把原始数据分类测试集和训练集,然后测试集放一边,训练集里面再挑子集作为迭代算法用的训练集!这个和K-fold思想很像。


致谢

@转--看懂论文的机器学习基本知识(四)–bootstrap
@知乎精选--统计中的 Bootstrap 方法是指什么?与 Monte Carlo 方法有什么联系与区别?
@红眼睛的猫--对于bootstrap的一些粗浅认识(转载)
@busyfruit--Boosting原理及其应用@转--决策树(ID3、C4.5、CART、随机森林)
@w28971023--GBDT(MART) 迭代决策树入门教程 | 简介
@gxiaob--条件熵 信息增益
@jasonfreak--使用sklearn进行集成学习——理论
@机器学习--为什么说bagging是减少variance,而boosting是减少bias?
@abcjennifer--统计学习方法——CART, Bagging, Random Forest, Boosting
@yshnny--bootstrap简单介绍
@u010659278--boosting和bagging算法学习
@a1b2c3d4123456--集成学习算法总结----Boosting和Bagging@emanlee--随机森林
@leo鱼--随机森林
@51CTO.COM--机器学习的算法(1):决策树之随机森林
@handspeaker--RandomForest随机森林总结
@博客园--Orisun
@tianguokaka--CART分类算法
@wxquare--决策树模型 ID3/C4.5/CART算法比较
@周志华--Boosting和Bagging综述[J][计算机工程与设计]
@宋静--SVM与Adaboost算法的应用与研究[M][大连海事大学]
@转--深入浅析python中的多进程、多线程、协程
@Vamei--Python标准库10 多进程初步 (multiprocessing包)
@为程序员服务--Python 多进程中使用共享内存在进程之间共享数据
@LegenDavid--随机森林和GBDT的几个核心问题
@handspeaker--RandomForest随机森林总结
@Dark_Scope--AdaBoost--从原理到实现
@百度技术博客--Boosting算法简介
@转--机器学习 —— 决策树及其集成算法(Bagging、随机森林、Boosting) - senlie zheng
@百度文库--Adaboost算法步骤
@OPEN 开发经验库--几种Boost算法的比较(Discrete AdaBoost, Real AdaBoost, LogitBoost, Gentle Adaboost)
@zengkui111--分类算法——Adaboost
@学习笔记1.0--各种分类算法的优缺点

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容