This course is orgnized into four major sections:
Supervised learning
We are giving the algorithm a bunch of “right answers”, and we are expecting the algorithm to provide us with right answers using the existing data.(e.g. regression 回归问题;classification 分类问题)
Regression: e.g. 房价预测
Classification: 多数情况下模型是离散的,比如根据肿瘤大小预测肿瘤是否为良性(0 vs. 1)
Learning Theory
How and why these learning models work.
It helps us better understand and better use machine learning.
Unsupervised Learning
You need to figure out what the structure is in a given data set when you are not given the right answers.(e.g. clustering 聚类分析)
Reinforcement Learning
You are asked to make a sequence of decisions over time.
Reward function: “bad” dog and “good” dog!
Applied to many problems in robotics, web crawling and so on.