Python学习的第四天

爬虫--大数据-- 使用Xpath语法进行解析--使用lxml中的xpath

路径表达式
  • 提取本地html中的数据
# 使用lxml提取 h1 标签中的内容
from lxml import html
# 读取html文件
with open('./index.html', 'r', encoding='utf-8') as f:
    htm_data = f.read()
    # print(htm_data)
    #  解析html 文件,获取selector对象
    selector = html.fromstring(htm_data)
    # selector中调用xpath方法
    # 要获取标签中的内容,末尾要添加text()
    # /从根节点选取
    h1 = selector.xpath('/html/body/h1/text()')
    print(h1[0])
# //代表可以从任意位置出发
    # //标签1[@属性=属性值】/标签2[@属性=属性值]
    a = selector.xpath('//div[@id="container"]/a/text()')
    print(a)
    # 获取p标签的内容
    p = selector.xpath('//div[@id="container"]/p/text()')
    print(p[0])

    # 获取属性
    h = selector.xpath('//div[@id="container"]/a/@href')
    print(h[0])
运行截图
  • 本地html文件
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Title</title>
</head>
<body>
<h1>欢迎来到王者荣耀</h1>
<ul><!--无序列表 布局-->
    <li><a href="https://pvp.qq.com/web201605/herolist.shtml"><img src="https://game.gtimg.cn/images/yxzj/img201606/heroimg/131/131.jpg" alt=""> 李白</a></li>
    <li><a href="https://pvp.qq.com/web201605/herolist.shtml"><img src="https://game.gtimg.cn/images/yxzj/img201606/heroimg/106/106.jpg" alt=""> 小乔</a></li>
    <li><a href="https://pvp.qq.com/web201605/herolist.shtml"><img src="https://game.gtimg.cn/images/yxzj/img201606/heroimg/193/193.jpg" alt=""> 战士</a></li>
</ul>
<ol><!--有序列表 布局-->
    <li>刺客</li>
    <li>法师</li>
    <li>凯</li>
</ol>
<!--div + css 布局-->
<div>第一个div标签</div>
<div id="container">
    <P>被动:李白使用普通攻击攻击敌人时,会积累1道剑气,持续3秒;积累4道剑气后进入侠客行状态,增加30点物理攻击力并解除青莲剑歌的封印,持续5秒;攻击建筑不会积累剑气</P>
    <a href="http://www.baidu.com/">欢迎来到百度</a>
</div>
<div>第三个div标签</div>
</body>
</html>

Requests

  • 导入
import requests
  • 方法
# Requests
# 导入
import requests
url = 'http://www.baidu.com/'
response = requests.get(url)
print(response)
# 获取str类型的响应
print(response.text)
# 获取bytes类型的响应
print(response.content)
# 获取响应头
print(response.headers)
# 获取状态码
print(response.status_code)

# 获取编码方式
print(response.encoding)
print(response.apparent_encoding)
# 200 Ok   404   500
# 没有添加请求头的知乎网站
resp = requests.get('https://www.zhihu.com/',)
print(resp.status_code)
#使用字典定义请求头
header = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
resp = requests.get('https://www.zhihu.com/',headers=header)
print(resp.status_code)
运行截图

提取当当网的信息 -图书名称、图书购买链接、图书价格、图书卖家名称—显示价格最低的前10家 柱状图

import requests
from lxml import html
import pandas as pd
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def spider_dangdang(isbn):
    # 目标站点地址
    url = 'http://search.dangdang.com/?key={}&act=input'.format(isbn)
    # print(url)
    header = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
    resp = requests.get(url, headers=header)
    html_data = resp.text
    # 将html页面写入本地
    # with open('dangdang.html', 'w', encoding='utf-8') as f:
    #     f.write(html_data)

    # 提取目标站的信息
    selector = html.fromstring(html_data)
    ul_list = selector.xpath('//div[@id="search_nature_rg"]/ul/li')
    print('您好,一共有{}家店铺售卖次数此书'.format(len(ul_list)))
    book_list = []
    for li in ul_list:
        #  图书名称
        title = li.xpath('./a/@title')[0].strip()
        print(title)
        #  图书购买链接
        href = li.xpath('./a/@href')[0]
        print(href)
        #  图书价格
        price = li.xpath('./p[@class="price"]/span[@class="search_now_price"]/text()')[0]
        price = float(price.replace("¥"," "))
        print(price)
        # 图书卖家名称
        store = li.xpath('./p[@class="search_shangjia"]/a/text()')
        store = '当当自营' if len(store) == 0 else store[0]
        print(store)
        # 添加每一个商家的图书信息
        book_list.append({
            'name': title,
            'link': href,
            'price': price,
            'store': store
        })
    # 按照价格进行排序
    book_list.sort(key=lambda x: x['price'])
    # 遍历book_list
    for book in book_list:
        print(book)
    # 显示价格最低的前10家 柱状图
    top10_store = [book_list[i] for i in range(10)]
    # x = []
    # for store in top10:
    #     x.append(store['store'])
    x = [x['store'] for x in top10_store]
    print(x)
    y = [x['price'] for x in top10_store]
    print(y)
    # plt.bar(x,y)
    plt.barh(x,y)
    plt.show()
    # 存储成csv文件
    df = pd.DataFrame(book_list)
    df.to_csv('dangdang.csv')
spider_dangdang('9787115428028')
柱状图

提取豆瓣电影网站信息—电影名,上映日期,类型,上映国家,想看人数、根据想看人数进行排序、绘制即将上映电影国家的占比图、绘制top5最想看的电影

import requests
from lxml import html
import pandas as pd
import jieba
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def Film():
    # 目标站点地址
    url = 'https://movie.douban.com/cinema/later/chongqing/'
    header = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
    resp = requests.get(url, headers=header)
    html_data = resp.text
    # 提取目标站的信息
    selector = html.fromstring(html_data)
    film = selector.xpath('//div[@id="showing-soon"]/div')
    print(film)
    div_list = []
    for film_list in film:
        # 电影名
        title_list = film_list.xpath('./div/h3/a/text()')[0]
        print(title_list)
        # 上映时间
        time_list = film_list.xpath('./div/ul/li[1]/text()')[0]
        print(time_list)
        # 电影类型
        type_list = film_list.xpath('./div/ul/li[2]/text()')[0]
        print(type_list)
        # 上映国家
        con_list = film_list.xpath('./div/ul/li[3]/text()')[0]
        print(con_list)
        # 想看人数
        number_list = film_list.xpath('./div/ul/li[4]/span/text()')[0]
        print(number_list)
        # 替换
        number_list = int(number_list.replace('人想看',''))
        # 添加电影信息
        div_list.append({
            'title': title_list,
            'time': time_list,
            'type': type_list,
            'con': con_list,
            'number': number_list
        })
        # 按照想看人数排序
    div_list.sort(key=lambda x:x['number'], reverse=True )
    print(div_list)
    # 遍历
    for items_list in div_list:
        print(items_list)
    # 绘制top5最想看的电影占比图
    # 提取前五部电影信息
    top5_store = [div_list[i] for i in range(5)]
    # 提取电影名
    x = [x['title'] for x in top5_store]
    print(x)
    # 提取想看人数
    y = [x['number'] for x in top5_store]
    print(y)
    explode = [0.1, 0, 0, 0, 0]
    plt.pie(y, explode=explode, labels=x, shadow=True, autopct='%1.1f%%')
    plt.axis('equal')
    plt.legend(loc=2)
    plt.show()

    # 绘制即将上映电影国家的占比图
    counts = {}
    # 提取所有上映国家
    s = [x['con'] for x in div_list]
    print(s)
    # 统计上映国家与数量
    for word in s:
        counts[word] = counts.get(word, 0) + 1
    print(counts)
    # 提取上映国家
    name = counts.keys()
    print(name)
    # 提取数量
    number = counts.values()
    print(number)
    explode1 = [0.1, 0, 0, 0]
    plt.pie(number, explode=explode1, labels=name, shadow=True, autopct='%1.1f%%')
    plt.axis('equal')
    plt.legend(loc=2)
    plt.show()
Film()
top5最想看的电影占比图
上映电影国家的占比图
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342