100天搞定机器学习|Day3多元线性回归

前情回顾
[第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解。实现方式是sklearn中的LinearRegression,我们也学习了LinearRegression的四个参数,fit_intercept、normalize、copy_X、n_jobs。然后介绍了LinearRegression的几个用法,fit(X,y)、predict(X)、score(X,y)。最后学习了matplotlib.pyplot将训练集结果和测试集结果可视化。


1.png

多元线性回归分析与简单线性回归很相似,但是要复杂一些了(影响因素由一个变成多个)。它有几个假设前提需要注意,

①线性,自变量和因变量之间应该是线性的

②同方差,误差项方差恒定

③残差负荷正态分布

④无多重共线性

出现了一些新的名词,残差(残差是指实际观察值与回归估计值的差,【计量经济学名词】2绝对残差)、多重共线性(解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确)。

对R感兴趣的同学可以看一下我之前分享的几篇文章

[R多元线性回归容易忽视的几个问题(1)多重共线性][2]

[R多元线性回归容易忽视的几个问题(2)多重共线性的克服][3]

[R多元线性回归容易忽视的几个问题(3)异方差性][4]

[R多元线性回归容易忽视的几个问题(4)异方差性的克服][5]

多元线性回归中还有虚拟变量和虚拟变量陷阱的概念

虚拟变量:分类数据,离散,数值有限且无序,比如性别可以分为男和女,回归模型中可以用虚拟变量表示,1表示男,0表示女。

虚拟变量陷阱:两个或多个变量高度相关,即一个变量一个变量可以由另一个预测得出。直观地说,有一个重复的类别:如果我们放弃了男性类别,则它在女性类别中被定义为零(女性值为零表示男性,反之亦然)。 虚拟变量陷阱的解决方案是删除一个分类变量 —— 如果有多个类别,则在模型中使用m-1。 遗漏的值可以被认为是参考值。

2.png

需要注意的是:变量并非越多越好,过多变量尤其是对输出没有影响的变量,可能导致模型预测精确度降低,所以要选择合适的变量,主要方法有三种,①向前选择(逐次加使RSS最小的自变量)②向后选择(逐次扔掉p值最大的变量)③双向选择

模型部分就是这样,下面开始python实现。

3.png

在开始操作之前,我们还是先观察一下数据,一共50组数据,有一些缺失值,也有虚拟变量(state:New York 、California、Florida)。


4.jpg

导入库

import pandas as pd
import numpy as np

导入数据集

dataset = pd.read_csv('50_Startups.csv')
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : ,  4 ].values

将类别数据数字化

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X[: , 3] = labelencoder.fit_transform(X[ : , 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()

OneHotEncoderone-hot编码是一种对离散特征值的编码方式,在LR模型中常用到,用于给线性模型增加非线性能力。
躲避虚拟变量陷阱

X = X[: , 1:]

拆分数据集为训练集和测试集

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)

第2步: 在训练集上训练多元线性回归模型

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, Y_train)

Step 3: 在测试集上预测结果

y_pred = regressor.predict(X_test)

个人感觉作为入门已经足够。但是多元线性回归分析是建立在上面说的四个假设前提上的(①线性,自变量和因变量之间应该是线性的②同方差,误差项方差恒定③残差负荷正态分布④无多重共线性),所以初步得到一个线性回归模型,并不一定可以直接拿来使用,还需要进行验证和诊断。

https://github.com/MLEveryday/100-Days-Of-ML-Code?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容