线程池笔记

线程池

  • 低资源消耗,降低了频繁创建线程和销毁线程的开销
  • 提高响应速度
  • 提高线程的可管理性,可以对线程进行一些操作,方便管理线程
线程池原理
image
线程池运行过程
image

线程池实现代码(阿里规范)

 /**
     * 响应阿里规范用线程池替换线程
     */
    private ThreadFactory threadFactory = new ThreadFactoryBuilder().setNameFormat("demo-pool-%d").build();
    private ExecutorService executorTask = new ThreadPoolExecutor(5, 200, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(1024), threadFactory, new ThreadPoolExecutor.AbortPolicy());
    //任务函数
    executorTask.execute(new Runnable() {
                @Override
                public void run() {
                    ResultResponse res = autoTestTools.runScene(entity);
                    if (res.isSuccess()) {
                        redisClient.set(scene.getTaskId() + "COPY", "true", "XX", "EX", overTime);
                    }
                }
            });

线程池重要的参数

  • corePoolSize 线程池核心线程大小

线程池中会维护一个最小的线程数量,即使这些线程处理空闲状态,他们也不会 被销毁,除非设置了allowCoreThreadTimeOut。这里的最小线程数量即是corePoolSize。

  • maximumPoolSize 线程池最大线程数量

一个任务被提交到线程池后,首先会缓存到工作队列(后面会介绍)中,如果工作队列满了,则会创建一个新线程,然后从工作队列中的取出一个任务交由新线程来处理,而将刚提交的任务放入工作队列。线程池不会无限制的去创建新线程,它会有一个最大线程数量的限制,这个数量即由maximunPoolSize来指定。

  • keepAliveTime 空闲线程存活时间

一个线程如果处于空闲状态,并且当前的线程数量大于corePoolSize,那么在指定时间后,这个空闲线程会被销毁,这里的指定时间由keepAliveTime来设定

  • unit 空间线程存活时间单位

keepAliveTime的计量单位

  • workQueue 工作队列

新任务被提交后,会先进入到此工作队列中,任务调度时再从队列中取出任务。jdk中提供了四种工作队列:

  1. ArrayBlockingQueue
基于数组的有界阻塞队列,按FIFO排序。新任务进来后,会放到该队列的队尾,有界的数组可以防止资源耗尽问题。当线程池中线程数量达到corePoolSize后,再有新任务进来,则会将任务放入该队列的队尾,等待被调度。如果队列已经是满的,则创建一个新线程,如果线程数量已经达到maxPoolSize,则会执行拒绝策略。
  1. LinkedBlockingQuene
基于链表的无界阻塞队列(其实最大容量为Interger.MAX),按照FIFO排序。由于该队列的近似无界性,当线程池中线程数量达到corePoolSize后,再有新任务进来,会一直存入该队列,而不会去创建新线程直到maxPoolSize,因此使用该工作队列时,参数maxPoolSize其实是不起作用的。
  1. SynchronousQuene
一个不缓存任务的阻塞队列,生产者放入一个任务必须等到消费者取出这个任务。也就是说新任务进来时,不会缓存,而是直接被调度执行该任务,如果没有可用线程,则创建新线程,如果线程数量达到maxPoolSize,则执行拒绝策略。
  1. PriorityBlockingQueue
具有优先级的无界阻塞队列,优先级通过参数Comparator实现。
  • threadFactory 线程工厂

创建一个新线程时使用的工厂,可以用来设定线程名、是否为daemon线程等等

  • handler 拒绝策略

当工作队列中的任务已到达最大限制,并且线程池中的线程数量也达到最大限制,这时如果有新任务提交进来,该如何处理呢。这里的拒绝策略,就是解决这个问题的,jdk中提供了4中拒绝策略:
1. CallerRunsPolicy
该策略下,在调用者线程中直接执行被拒绝任务的run方法,除非线程池已经shutdown,则直接抛弃任务。
2. AbortPolicy
该策略下,直接丢弃任务,并抛出RejectedExecutionException异常。
3. DiscardPolicy
该策略下,直接丢弃任务,什么都不做。
4. DiscardOldestPolicy
该策略下,抛弃进入队列最早的那个任务,然后尝试把这次拒绝的任务放入队列
5.

早期创建线程池方式

  • Executors#newCachedThreadPool => 创建可缓存的线程池

    1. corePoolSize => 0,核心线程池的数量为0

      maximumPoolSize => ==Integer.MAX_VALUE,可以认为最大线程数是无限的==

      keepAliveTime => 60L

      unit => 秒

      workQueue => SynchronousQueue
  • Executors#newSingleThreadExecutor => 创建单线程的线程池

    corePoolSize => 1,核心线程池的数量为1

    maximumPoolSize => 1,只可以创建一个非核心线程

    keepAliveTime => 0L

    unit => 秒

    ==workQueue => LinkedBlockingQueue==

    当一个任务提交时,首先会创建一个核心线程来执行任务,如果超过核心线程的数量,将会放入队列中,因为LinkedBlockingQueue是长度为Integer.MAX_VALUE的队列,可以认为是无界队列,因此往队列中可以插入无限多的任务,在资源有限的时候容易引起OOM异常,同时因为无界队列,maximumPoolSize和keepAliveTime参数将无效,压根就不会创建非核心线程

  • Executors#newFixedThreadPool => 创建固定长度的线程池

    corePoolSize => 1,核心线程池的数量为1

    maximumPoolSize => 1,只可以创建一个非核心线程

    keepAliveTime => 0L

    unit => 秒

    ==workQueue => LinkedBlockingQueue==

    它和SingleThreadExecutor类似,唯一的区别就是核心线程数不同,并且由于使用的是LinkedBlockingQueue,在资源有限的时候容易引起OOM异常

总结

FixedThreadPool和SingleThreadExecutor => 允许的请求队列长度为Integer.MAX_VALUE,可能会堆积大量的请求,从而引起OOM异常
CachedThreadPool => 允许创建的线程数为Integer.MAX_VALUE,可能会创建大量的线程,从而引起OOM异常

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342