NLP系列学习:文本分词

中文分词是中文自然语言处理的一个非常重要的组成部分,在学界和工业界都有比较长时间的研究历史,也有一些比较成熟的解决方案

1:分词理论

这一部分在一面这个链接里有很不错的总结,特搬运过来,我主要说说操作的部分。

链接:https://www.zhihu.com/question/19578687/answer/190569700

中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块。不同于英文的是,中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词,分词效果将直接影响词性、句法树等模块的效果。当然分词只是一个工具,场景不同,要求也不同。

在人机自然语言交互中,成熟的中文分词算法能够达到更好的自然语言处理效果,帮助计算机理解复杂的中文语言。竹间智能在构建中文自然语言对话系统时,结合语言学不断优化,训练出了一套具有较好分词效果的算法模型,为机器更好地理解中文自然语言奠定了基础。

在此,对于中文分词方案、当前分词器存在的问题,以及中文分词需要考虑的因素及相关资源竹间智能 自然语言与深度学习小组 做了些整理和总结,希望能为大家提供一些参考。

中文分词根据实现原理和特点,主要分为以下2个类别:

1、基于词典分词算法

也称字符串匹配分词算法。该算法是按照一定的策略将待匹配的字符串和一个已建立好的“充分大的”词典中的词进行匹配,若找到某个词条,则说明匹配成功,识别了该词。常见的基于词典的分词算法分为以下几种:正向最大匹配法、逆向最大匹配法双向匹配分词法等。

基于词典的分词算法是应用最广泛、分词速度最快的。很长一段时间内研究者都在对基于字符串匹配方法进行优化,比如最大长度设定、字符串存储和查找方式以及对于词表的组织结构,比如采用TRIE索引树、哈希索引等。

2、基于统计的机器学习算法

这类目前常用的是算法是HMM、CRF、SVM、深度学习等算法,比如stanford、Hanlp分词工具是基于CRF算法。以CRF为例,基本思路是对汉字进行标注训练,不仅考虑了词语出现的频率,还考虑上下文,具备较好的学习能力,因此其对歧义词和未登录词的识别都具有良好的效果。

Nianwen Xue在其论文《Combining Classifiers for Chinese Word Segmentation》中首次提出对每个字符进行标注,通过机器学习算法训练分类器进行分词,在论文《Chinese word segmentation as character tagging》中较为详细地阐述了基于字标注的分词法。

常见的分词器都是使用机器学习算法和词典相结合,一方面能够提高分词准确率,另一方面能够改善领域适应性。

随着深度学习的兴起,也出现了基于神经网络的分词器,例如有人员尝试使用双向LSTM+CRF实现分词器,其本质上是序列标注,所以有通用性,命名实体识别等都可以使用该模型,据报道其分词器字符准确率可高达97.5%。算法框架的思路与论文《Neural Architectures for Named Entity Recognition》类似,利用该框架可以实现中文分词,如下图所示:

首先对语料进行字符嵌入,将得到的特征输入给双向LSTM,然后加一个CRF就得到标注结果。

分词器当前存在问题:

目前中文分词难点主要有三个:

1、分词标准:比如人名,在哈工大的标准中姓和名是分开的,但在Hanlp中是合在一起的。这需要根据不同的需求制定不同的分词标准。

2、歧义:对同一个待切分字符串存在多个分词结果。

歧义又分为组合型歧义、交集型歧义和真歧义三种类型。

1) 组合型歧义:分词是有不同的粒度的,指某个词条中的一部分也可以切分为一个独立的词条。比如“中华人民共和国”,粗粒度的分词就是“中华人民共和国”,细粒度的分词可能是“中华/人民/共和国”

2) 交集型歧义:在“郑州天和服装厂”中,“天和”是厂名,是一个专有词,“和服”也是一个词,它们共用了“和”字。

3) 真歧义:本身的语法和语义都没有问题, 即便采用人工切分也会产生同样的歧义,只有通过上下文的语义环境才能给出正确的切分结果。例如:对于句子“美国会通过对台售武法案”,既可以切分成“美国/会/通过对台售武法案”,又可以切分成“美/国会/通过对台售武法案”。

一般在搜索引擎中,构建索引时和查询时会使用不同的分词算法。常用的方案是,在索引的时候使用细粒度的分词以保证召回,在查询的时候使用粗粒度的分词以保证精度。

3、新词:也称未被词典收录的词,该问题的解决依赖于人们对分词技术和汉语语言结构的进一步认识。

2:实践操作

1;数据的准备

数据的准备因为我在实习,所以数据就不需要自己花费很多时间准备了,在我没有实习之前,我的数据一方面是公开的数据集,另外一些是自己写爬虫去爬取数据,第二种方法用的多一些,如果使用公开数据的话,搜狗的新闻数据还不错。

另外一点我们要注意,我们在进行中文写入和存储的时候,默认的编码要用utf-8,之前在分词处理的时候一直报错,原因是我用来ASCLL的编码导致的。

2:数据分词

常用的分词软件非常多,这里我推荐我使用的感觉比较好的一款,jieba分词,直接pip安装即可,具体的用法大家可以到https://github.com/fxsjy/jieba去看看,已经非常详细

代码如下:

原来的文档如下图所示;

分完词后效果:

尽管有一些问题,但是还是基本可以用的,对于一些特定的词我们可以加入自定义词库来进行解决。

在上面我们解析的文本中有很多无效的词,比如“的”,“请”,还有一些标点符号,这些我们不想在文本分析的时候引入,因此需要去掉,这些词就是停用词。

网上有很多开源的停用词表,我现在用的是一个1208词的,后续上传一下,调用方式如下:

在文本处理完整后,我们就可以进行向量化操作了,这一部分我们将在下一篇文章详细讲述。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容