简单易懂的高斯滤波

冒泡...十一月中旬啦...周末愉快呐!

高斯滤波

先引入两个问题。
1.图像为什么要滤波?
答:a.消除图像在数字化过程中产生或者混入的噪声。
b.提取图片对象的特征作为图像识别的特征模式。
2.滤波器该如何去理解?
答:滤波器可以想象成一个包含加权系数的窗口或者说一个镜片,当使用滤波器去平滑处理图像的时候,就是把通过这个窗口或者镜片去看这个图像。

滤波器分为很多种,有方框滤波、均值滤波、高斯滤波等。
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声。
所以在讲高斯滤波之前,先解释一下什么是高斯噪声?

高斯噪声

首先,噪声在图像当中常表现为一引起较强视觉效果的孤立像素点或像素块。简单来说,噪声的出现会给图像带来干扰,让图像变得不清楚。
高斯噪声就是它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。

高斯滤波器是根据高斯函数的形状来选择权值的线性平滑滤波器
所以接下来再讲解一下高斯函数和高斯核。

高斯函数


注:σ的大小决定了高斯函数的宽度。

高斯核

理论上,高斯分布在所有定义域上都有非负值,这就需要一个无限大的卷积核。实际上,仅需要取均值周围3倍标准差内的值,以外部份直接去掉即可。
高斯滤波的重要两步就是先找到高斯模板然后再进行卷积,模板(mask在查阅中有的地方也称作掩膜或者是高斯核)。所以这个时候需要知道它怎么来?又怎么用?
举个栗子:
假定中心点的坐标是(0,0),那么取距离它最近的8个点坐标,为了计算,需要设定σ的值。假定σ=1.5,则模糊半径为1的高斯模板就算如下


这个时候我们我们还要确保这九个点加起来为1(这个是高斯模板的特性),这9个点的权重总和等于0.4787147,因此上面9个值还要分别除以0.4787147,得到最终的高斯模板。

高斯滤波计算

有了高斯模板,那么高斯滤波的计算便顺风顺水了。
举个栗子:
假设现有9个像素点,灰度值(0-255)的高斯滤波计算如下:


参考来源:(https://blog.csdn.net/nima1994/article/details/79776802)

将这9个值加起来,就是中心点的高斯滤波的值。
对所有点重复这个过程,就得到了高斯模糊后的图像。

高斯滤波步骤

综上可以总结一下步骤:

(1)移动相关核的中心元素,使它位于输入图像待处理像素的正上方
(2)将输入图像的像素值作为权重,乘以相关核
(3)将上面各步得到的结果相加做为输出
简单来说就是根据高斯分布得到高斯模板然后做卷积相加的一个过程。

代码实现:

#高斯函数
void GaussianBlur(InputArray src,      //输入图像
            OutputArray dst,    //输出图像
            Size ksize,       //内核的大小
            double sigmaX,     //高斯核函数在X方向的标准偏差  
            double sigmaY=0,    //高斯核函数在Y方向的标准偏差
            intborderType=BORDER_DEFAULT )   
#include <opencv2/opencv.hpp>
using namespace cv; 
int main(int argc,char** argv) {
    //载入原图
    Mat image = imread("Gaussian.jpg");
    //创建窗口
    namedWindow("高斯滤波【原图】");
    namedWindow("高斯滤波【效果图】");
    //进行滤波操作
    Mat out;
    GaussianBlur(image,out,Size(3,3),0,0);
    //显示
    imshow("高斯滤波【原图】", image);
    imshow("高斯滤波【效果图】", out);
    waitKey();
    return(0);
}

参考资料:(https://www.cnblogs.com/qiqibaby/p/5289977.html
(https://blog.csdn.net/guoyunfei123/article/details/81660639)

Ending~水逆来了诶 就希望顺顺利利挺过去吧!干巴爹!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343