转自 :http://blog.xiayf.cn/2013/06/29/learn-python-in-y-minutes/
译者:youngsterxyf
Python由Guido Van Rossum发明于90年代初期,是目前最流行的编程语言之一,因其语法的清晰简洁我爱上了Python,其代码基本上可以 说是可执行的伪代码。
非常欢迎反馈!你可以通过推特@louiedinh或louiedinh AT gmail联系我。
备注:本文是专门针对Python 2.7的,但应该是适用于Python 2.x的。很快我也会为Python 3写这样的一篇文章!
<pre style="margin: 0px 0px 10px; padding: 9.5px; border: 1px solid rgba(0, 0, 0, 0.15); font-style: inherit; font-variant: inherit; font-weight: inherit; font-stretch: inherit; line-height: 20px; font-family: Monaco, Menlo, Consolas, "Courier New", monospace; font-size: 13px; vertical-align: baseline; box-sizing: border-box; color: rgb(51, 51, 51); border-radius: 4px; display: block; word-break: break-all; word-wrap: break-word; white-space: pre-wrap; background-color: rgb(245, 245, 245);"># 单行注释以井字符开头
""" 我们可以使用三个双引号(")或单引号(')
来编写多行注释
"""
##########################################################
## 1\. 基本数据类型和操作符
##########################################################
# 数字
3 #=> 3
# 你预想的数学运算
1 + 1 #=> 2
8 - 1 #=> 7
10 * 2 #=> 20
35 / 5 #=> 7
# 除法略显诡异。整数相除会自动向下取小于结果的最大整数
11 / 4 #=> 2
# 还有浮点数和浮点数除法(译注:除数和被除数两者至少一个为浮点数,结果才会是浮点数)
2.0 # 这是一个浮点数
5.0 / 2.0 #=> 2.5 额...语法更明确一些
# 使用括号来强制优先级
(1 + 3) * 2 #=> 8
# 布尔值也是基本类型数据
True
False
# 使用not来求反
not True #=> False
not False #=> True
# 相等比较使用==
1 == 1 #=> True
2 == 1 #=> False
# 不相等比较使用!=
1 != 1 #=> False
2 != 1 #=> True
# 更多的比较方式
1 < 10 #=> True
1 > 10 #=> False
2 <= 2 #=> True
2 >= 2 #=> True
# 比较操作可以串接!
1 < 2 < 3 #=> True
2 < 3 < 2 #=> False
# 可以使用"或'创建字符串
"This is a string."
'This is also a string.'
# 字符串也可以相加!
"Hello " + "world!" #=> "Hello world!"
# 字符串可以看作是一个字符列表
"This is a string"[0] #=> 'T'
# None是一个对象
None #=> None
####################################################
## 2\. 变量与数据容器
####################################################
# 打印输出非常简单
print "I'm Python. Nice to meet you!"
# 赋值之前不需要声明变量
some_var = 5 # 约定使用 小写_字母_和_下划线 的命名方式
some_var #=> 5
# 访问之前未赋值的变量会产生一个异常
try:
some_other_var
except NameError:
print "Raises a name error"
# 赋值时可以使用条件表达式
some_var = a if a > b else b
# 如果a大于b,则将a赋给some_var,
# 否则将b赋给some_var
# 列表用于存储数据序列
li = []
# 你可以一个预先填充的列表开始
other_li = [4, 5, 6]
# 使用append将数据添加到列表的末尾
li.append(1) #li现在为[1]
li.append(2) #li现在为[1, 2]
li.append(4) #li现在为[1, 2, 4]
li.append(3) #li现在为[1, 2, 4, 3]
# 使用pop从列表末尾删除数据
li.pop() #=> 3,li现在为[1, 2, 4]
# 把刚刚删除的数据存回来
li.append(3) # 现在li再一次为[1, 2, 4, 3]
# 像访问数组一样访问列表
li[0] #=> 1
# 看看最后一个元素
li[-1] #=> 3
# 越界访问会产生一个IndexError
try:
li[4] # 抛出一个IndexError异常
except IndexError:
print "Raises an IndexError"
# 可以通过分片(slice)语法来查看列表中某个区间的数据
# 以数学角度来说,这是一个闭合/开放区间
li[1:3] #=> [2, 4]
# 省略结束位置
li[2:] #=> [4, 3]
# 省略开始位置
li[:3] #=> [1, 2, 4]
# 使用del从列表中删除任意元素
del li[2] #li现在为[1, 2, 3]
# 列表可以相加
li + other_li #=> [1, 3, 3, 4, 5, 6] - 注意:li和other_li并未改变
# 以extend来连结列表
li.extend(other_li) # 现在li为[1, 2, 3, 4, 5, 6]
# 以in来检测列表中是否存在某元素
1 in li #=> True
# 以len函数来检测列表长度
len(li) #=> 6
# 元组类似列表,但不可变
tup = (1, 2, 3)
tup[0] #=> 1
try:
tup[0] = 3 # 抛出一个TypeError异常
except TypeError:
print "Tuples cannot be mutated."
# 可以在元组上使用和列表一样的操作
len(tup) #=> 3
tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
tup[:2] #=> (1, 2)
2 in tup #=> True
# 可以将元组解包到变量
a, b, c = (1, 2, 3) # 现在a等于1,b等于2,c等于3
# 如果你省略括号,默认也会创建元组
d, e, f = 4, 5, 6
# 看看两个变量互换值有多简单
e, d = d, e #现在d为5,e为4
# 字典存储映射关系
empty_dict = {}
# 这是一个预先填充的字典
filled_dict = {"one": 1, "two": 2, "three": 3}
# 以[]语法查找值
filled_dict['one'] #=> 1
# 以列表形式获取所有的键
filled_dict.keys() #=> ["three", "two", "one"]
# 注意 - 字典键的顺序是不确定的
# 你的结果也许和上面的输出结果并不一致
# 以in来检测字典中是否存在某个键
"one" in filled_dict #=> True
1 in filled_dict #=> False
# 试图使用某个不存在的键会抛出一个KeyError异常
filled_dict['four'] #=> 抛出KeyError异常
# 使用get方法来避免KeyError
filled_dict.get("one") #=> 1
filled_dict.get("four") #=> None
# get方法支持一个默认参数,不存在某个键时返回该默认参数值
filled_dict.get("one", 4) #=> 1
filled_dict.get("four", 4) #=> 4
# setdefault方法是一种添加新的键-值对到字典的安全方式
filled_dict.setdefault("five", 5) #filled_dict["five"]设置为5
filled_dict.setdefault("five", 6) #filled_dict["five"]仍为5
# 集合
empty_set = set()
# 以几个值初始化一个集合
filled_set = set([1, 2, 2, 3, 4]) # filled_set现为set([1, 2, 3, 4, 5])
# 以&执行集合交运算
other_set = set([3, 4, 5, 6])
filled_set & other_set #=> set([3, 4, 5])
# 以|执行集合并运算
filled_set | other_set #=> set([1, 2, 3, 4, 5, 6])
# 以-执行集合差运算
set([1, 2, 3, 4]) - set([2, 3, 5]) #=> set([1, 4])
# 以in来检测集合中是否存在某个值
2 in filled_set #=> True
10 in filled_set #=> False
####################################################
## 3\. 控制流程
####################################################
# 创建个变量
some_var = 5
# 以下是一个if语句。缩进在Python是有重要意义的。
# 打印 "some_var is smaller than 10"
if some_var > 10:
print "some_var is totally bigger than 10."
elif some_var < 10:
print "some_var is smaller than 10."
else:
print "some_var is indeed 10."
"""
For循环在列表上迭代
输出:
dog is a mammal
cat is a mammal
mouse is a mammal
"""
for animal in ["dog", "cat", "mouse"]:
# 可以使用%来插补格式化字符串
print "%s is a mammal" % animal
"""
while循环直到未满足某个条件。
输出:
0
1
2
3
"""
x = 0
while x < 4:
print x
x += 1 # x = x + 1的一种简写
# 使用try/except块来处理异常
# 对Python 2.6及以上版本有效
try:
# 使用raise来抛出一个错误
raise IndexError("This is an index error")
except IndexError as e:
pass # pass就是什么都不干。通常这里用来做一些恢复工作
# 对于Python 2.7及以下版本有效
try:
raise IndexError("This is an index error")
except IndexError, e: # 没有"as",以逗号替代
pass
####################################################
## 4\. 函数
####################################################
# 使用def来创建新函数
def add(x, y):
print "x is %s and y is %s" % (x, y)
return x + y # 以一个return语句来返回值
# 以参数调用函数
add(5, 6) #=> 11 并输出 "x is 5 and y is 6"
# 另一种调用函数的方式是关键字参数
add(x=5, y=6) # 关键字参数可以任意顺序输入
# 可定义接受可变数量的位置参数的函数
def varargs(*args):
return args
varargs(1, 2, 3) #=> (1, 2, 3)
# 也可以定义接受可变数量关键字参数的函数
def keyword_args(**kwargs):
return kwargs
# 调用一下该函数看看会发生什么
keyword_args(big="foot", loch="ness") #=> {"big": "foo", "loch": "ness"}
# 也可以一次性接受两种参数
def all_the_args(*args, **kwargs):
print args
print kwargs
"""
all_the_args(1, 2, a=3, b=4)输出:
[1, 2]
{"a": 3, "b": 4}
"""
# 在调用一个函数时也可以使用*和**
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
foo(*args) #等价于foo(1, 2, 3, 4)
foo(**kwargs) # 等价于foo(a=3, b=4)
foo(*args, **kwargs) # 等价于foo(1, 2, 3, 4, a=3, b=4)
# Python的函数是一等函数
def create_adder(x):
def adder(y):
return x + y
return adder
add_10 = create_adder(10)
add_10(3) #=> 13
# 也有匿名函数
(lamda x: x > 2)(3) #=> True
# 有一些内置的高阶函数
map(add_10, [1, 2, 3]) #=> [11, 12, 13]
filter(lamda x: x > 5, [3, 4, 5, 6, 7]) #=>[6, 7]
# 可以使用列表推导来实现映射和过滤
[add_10(i) for i in [1, 2, 3]] #=> [11, 13, 13]
[x for x in [3, 4, 5, 6,7 ] if x > 5] #=> [6, 7]
####################################################
## 5\. 类
####################################################
# 创建一个子类继承自object来得到一个类
class Human(object):
# 类属性。在该类的所有示例之间共享
species = "H. sapiens"
# 基本初始化构造方法
def __init__(self, name):
# 将参数赋值给实例的name属性
self.name = name
# 实例方法。所有示例方法都以self为第一个参数
def say(self, msg):
return "%s: %s" % (self.name, msg)
# 类方法由所有实例共享
# 以调用类为第一个参数进行调用
@classmethod
def get_species(cls):
return cls.species
# 静态方法的调用不需要一个类或实例的引用
@staticmethod
def grunt():
return "*grunt*"
# A property is just like a getter.
# It turns the method age() into an read-only attribute
# of the same name.
#属性就像一个getter,让age()只读
@property
def age(self):
return self._age
# This allows the property to be set设置属性
@age.setter
def age(self, age):
self._age = age
# This allows the property to be deleted删除属性
@age.deleter
def age(self):
del self._age
# 实例化一个类
i = Human(name="Ian")
print i.say("hi") # 输出"Ian: hi"
j = Human("Joel")
print j.say("hello") # 输出"Joel: hello"
# 调用类方法
i.get_species() #=> "H. sapiens"
# 修改共享属性
Human.species = "H. neanderthalensis"
i.get_species() #=> "H. neanderthalensis"
j.get_species() #=> "H. neanderthalensis"
# 调用静态方法
Human.grunt() #=> "*grunt*"</pre>
# Update the property
i.age = 42
# Get the property
i.age # => 42
# Delete the property
del i.age
i.age # => raises an AttributeError
####################################################
# 6. Modules模块
####################################################
# You can import modules引用模块
import math
print math.sqrt(16) # => 4
# You can get specific functions from a module引用部分函数
from math import ceil, floor
print ceil(3.7) # => 4.0
print floor(3.7) # => 3.0
# You can import all functions from a module.引用全部函数
# Warning: this is not recommended
from math import *
# You can shorten module names用m替代math
import math as m
math.sqrt(16) == m.sqrt(16) # => True
# you can also test that the functions are equivalent
from math import sqrt
math.sqrt == m.sqrt == sqrt # => True
# Python modules are just ordinary python files. You
# can write your own, and import them. The name of the
# module is the same as the name of the file.
# You can find out which functions and attributes
# defines a module.
import math
dir(math)
# If you have a Python script named math.py in the same
# folder as your current script, the file math.py will
# be loaded instead of the built-in Python module.
# This happens because the local folder has priority
# over Python's built-in libraries.
####################################################
# 7. Advanced高级
####################################################
# Generators生成器
# A generator "generates" values as they are requested instead of storing
# everything up front
# The following method (*NOT* a generator) will double all values and store it
# in `double_arr`. For large size of iterables, that might get huge!
没有生成器,存储的变量会变很大
def double_numbers(iterable):
double_arr = []
for i in iterable:
double_arr.append(i + i)
return double_arr
生成器直接先执行for操作
# Running the following would mean we'll double all values first and return all
# of them back to be checked by our condition
for value in double_numbers(range(1000000)): # `test_non_generator`
print value
if value > 5:
break
# We could instead use a generator to "generate" the doubled value as the item
# is being requested
def double_numbers_generator(iterable):
for i in iterable:
yield i + i
# Running the same code as before, but with a generator, now allows us to iterate
# over the values and doubling them one by one as they are being consumed by
# our logic. Hence as soon as we see a value > 5, we break out of the
# loop and don't need to double most of the values sent in (MUCH FASTER!)
for value in double_numbers_generator(xrange(1000000)): # `test_generator`
print value
if value > 5:
break
# BTW: did you notice the use of `range` in `test_non_generator` and `xrange` in `test_generator`?
# Just as `double_numbers_generator` is the generator version of `double_numbers`
# We have `xrange` as the generator version of `range`
# `range` would return back and array with 1000000 values for us to use
# `xrange` would generate 1000000 values for us as we request / iterate over those items
注:rang()和range()区别在于,range()返回给一个包含1000000值得列表,而xrange()返回一个生成器。
# Just as you can create a list comprehension, you can create generator
# comprehensions as well.
values = (-x for x in [1, 2, 3, 4, 5])
for x in values:
print(x) # prints -1 -2 -3 -4 -5 to console/terminal
# You can also cast a generator comprehension directly to a list.
values = (-x for x in [1, 2, 3, 4, 5])
gen_to_list = list(values)
print(gen_to_list) # => [-1, -2, -3, -4, -5]
# Decorators
# A decorator is a higher order function, which accepts and returns a function.
# Simple usage example – add_apples decorator will add 'Apple' element into
# fruits list returned by get_fruits target function.
装饰器
可以接收和返回函数,简单使用:
def add_apples(func):
def get_fruits():
fruits = func()
fruits.append('Apple')
return fruits
return get_fruits
@add_apples
def fruits():
return ['Banana', 'Mango', 'Orange']
# Prints out the list of fruits with 'Apple' element in it:
# Banana, Mango, Orange, Apple
print ', '.join(fruits())
# in this example beg wraps say
# Beg will call say. If say_please is True then it will change the returned
# message
wraps组件:
from functools import wraps
def beg(target_function):
@wraps(target_function)
def wrapper(*args, **kwargs):
msg, say_please = target_function(*args, **kwargs)
if say_please:
return "{} {}".format(msg, "Please! I am poor :(")
return msg
return wrapper
@beg
def say(say_please=False):
msg = "Can you buy me a beer?"
return msg, say_please
print say() # Can you buy me a beer?
print say(say_please=True) # Can you buy me a beer? Please! I am poor :(